【摘要】2.2向量的線性運算2.向量的加法情景:請看如下問題:(1)如圖(1),某人從A到B,再從B按原來的方向到C,則兩次位移的和AB→+BC→應(yīng)該是________.(2)如圖(2),飛機從A到B,再改變方向從B到C,則兩次位移的和AB→+BC→應(yīng)該是________.(3)如圖
2024-12-12 20:22
2024-12-09 10:16
【摘要】2.向量的減法上節(jié)課我們學(xué)習(xí)了向量加法的概念,并給出了求作和向量的方法.如果河水的流速為2km/n,要想船以6km/n的速度垂直駛向?qū)Π?,如何求船本身的速度和方向呢?.與a______________的向量,叫做a的相反向量,記為________,零向量的相反向量是________.答案:長度相等
2024-12-12 07:03
【摘要】向量的線性運算向量的加法一、填空題1.已知向量a表示“向東航行1km”,向量b表示“向南航行1km”,則a+b表示_______.①向東南航行2km②向東南航行2km③向東北航行2km④向東北航行2km2.在平行四邊形ABCD中,BC→+DC→+BA→+DA→
2024-12-09 03:24
【摘要】向量的加法【學(xué)習(xí)目標(biāo)】;;,并會用它們進(jìn)行向量計算【學(xué)習(xí)重難點】重點:向量加法的三角法則、平行四邊形則和加法運算律難點:向量加法的三角法則、平行四邊形則和加法運算律;【自主學(xué)習(xí)】、向量的加法:已知向量a和b,_____________________________________
2024-11-24 01:05
【摘要】第2章平面向量2.1向量的概念及表示情景:如圖,一只老鼠從A處以30km/h的速度向西北方向逃竄,如果貓由B處向正東方向以40km/h的速度追.思考:貓能捉到老鼠嗎?為什么?1.我們把既有________又有________的量叫做向量.如:力、位移、速度、加速度等.答案:大小方向
2024-12-12 13:12
【摘要】2.平面向量的坐標(biāo)運算情景:我們知道,在直角坐標(biāo)平面內(nèi),每一個點都可用一對有序?qū)崝?shù)(即它的坐標(biāo))表示,如點A(x,y)等.思考:對于每一個向量如何表示?若知道平面向量的坐標(biāo),應(yīng)如何進(jìn)行運算?1.兩個向量和的坐標(biāo)等于________________________________.即若a=(x1,y1),b
2024-12-13 03:42
【摘要】2.4向量的數(shù)量積前面我們學(xué)習(xí)過向量的加減法,實數(shù)與向量的乘法,知道a+b,a-b,λa(λ∈R)仍是向量,大家自然要問:兩個向量是否可以相乘?相乘后的結(jié)果是什么?是向量還是數(shù)?1.已知兩個非零向量a與b,它們的夾角為θ,我們把數(shù)量________叫做a與b的數(shù)量積,記作__________
2024-12-09 10:15
【摘要】2.向量的數(shù)乘情景:我們已經(jīng)學(xué)習(xí)了向量的加法,請同學(xué)們作出a+a+a和(-a)+(-a)+(-a)(與已知向量a相比).思考:相加后和的長度與方向有什么變化?這些變化與哪些因素有關(guān)?1.實數(shù)λ與向量a的積是一個向量,記作________.答案:λa2.|λa|=________.
【摘要】1.弧度制度量長度可以用米、尺、碼等不同的單位制,度量重量可以用千克、斤、磅等不同的單位制.不同的單位制能給解決問題帶來方便,角的度量是否也能用不同的單位制呢?一、弧度制的概念1.弧度制:我們把等于半徑長的圓弧所對的圓心角叫做________的角.2.正角、零角、負(fù)角的弧度數(shù).(1)正角的弧度數(shù)是一個__
2024-12-13 03:48
【摘要】【金榜教程】2021年高中數(shù)學(xué)向量的加法檢測試題北師大版必修4(30分鐘50分)一、選擇題(每小題4分,共16分)△ABC中,ABa?,BCb?,則ab?=()(A)AB(B)AC(C)BC(D)CAABCD中,ABa?,ADb?,則ACBA?
2024-12-07 03:15
【摘要】2.3向量的坐標(biāo)表示2.平面向量基本定理情景:“神舟”十號宇宙飛船在升空的某一時刻,速度可以分解成豎直向上和水平向前的兩個分速度.在力的分解的平行四邊形法則中,我們看到一個力可以分解為兩個不共線方向的力的和.思考:平面內(nèi)任一向量是否可以用兩個不共線的向量來表示呢?1.如果e1,e2是同一平面內(nèi)