【摘要】向量的線性運算向量的加法一、填空題1.已知向量a表示“向東航行1km”,向量b表示“向南航行1km”,則a+b表示_______.①向東南航行2km②向東南航行2km③向東北航行2km④向東北航行2km2.在平行四邊形ABCD中,BC→+DC→+BA→+DA→
2024-12-09 03:24
【摘要】向量的加法【學習目標】;;,并會用它們進行向量計算【學習重難點】重點:向量加法的三角法則、平行四邊形則和加法運算律難點:向量加法的三角法則、平行四邊形則和加法運算律;【自主學習】、向量的加法:已知向量a和b,_____________________________________
2024-11-24 01:05
【摘要】2.2向量的線性運算2.向量的加法情景:請看如下問題:(1)如圖(1),某人從A到B,再從B按原來的方向到C,則兩次位移的和AB→+BC→應該是________.(2)如圖(2),飛機從A到B,再改變方向從B到C,則兩次位移的和AB→+BC→應該是________.(3)如圖
2024-12-09 10:16
2024-12-12 20:22
【摘要】"【志鴻全優(yōu)設計】2021-2021學年高中數(shù)學向量的加法課后訓練北師大版必修4"1.已知非零向量a,b,c,則向量(a+c)+b,b+(a+c),b+(c+a),c+(b+a),c+(a+b)中,與向量a+b+c相等的個數(shù)為().A.2B.3C.
2024-12-07 03:14
【摘要】向量的減法一、填空題1.化簡OP→-QP→+PS→+SP→的結(jié)果等于________.2.如圖所示,在梯形ABCD中,AD∥BC,AC與BD交于O點,則BA→-BC→-OA→+OD→+DA→=________.3.化簡(AB→-CD→)-(AC→-BD→)的結(jié)果是____
【摘要】向量的應用(一)一、填空題1.在△ABC中,已知A(4,1)、B(7,5)、C(-4,7),則BC邊的中線AD的長是________.2.過點(1,2)且與直線3x-y+1=0垂直的直線的方程是____________.3.已知直線l1:3x+4y-12=0,l2:7x+y-28=0,則直線l1與l
2024-12-09 03:25
【摘要】向量的應用(二)一、填空題1.一質(zhì)點受到平面上的三個力F1,F(xiàn)2,F(xiàn)3(單位:牛頓)的作用而處于平衡狀態(tài),已知F1,F(xiàn)2成90°角,且F1,F(xiàn)2的大小分別為2和4,則F3的大小為________牛頓.2.用力F推動一物體水平運動sm,設F與水平面的夾角為θ,則對物體所做的功為________.3
2024-12-09 00:28
【摘要】向量的數(shù)量積(三)一、填空題1.已知向量a=(2,1),b=(-1,k),a2(2a-b)=0,則k=________.2.已知a=(-3,2),b=(-1,0),向量λa+b與a-2b垂直,則實數(shù)λ的值為________.3.平面向量a與b的夾角為60°,a=(2,
2024-12-09 10:15
【摘要】向量的數(shù)量積(一)一、填空題1.已知|a|=3,|b|=4,且a與b的夾角θ=150°,則a·b=________.2.已知|a|=9,|b|=62,a·b=-54,則a與b的夾角θ為________.3.|a|=2,|b|=4,向量a與向量b的夾角為120&
【摘要】【金榜教程】2021年高中數(shù)學向量的加法檢測試題北師大版必修4(30分鐘50分)一、選擇題(每小題4分,共16分)△ABC中,ABa?,BCb?,則ab?=()(A)AB(B)AC(C)BC(D)CAABCD中,ABa?,ADb?,則ACBA?
2024-12-07 03:15
【摘要】向量的坐標表示平面向量基本定理一、填空題1.若e1,e2是平面內(nèi)的一組基底,則下列四組向量能作為平面向量的基底的是________.①e1-e2,e2-e1②2e1+e2,e1+2e2③2e2-3e1,6e1-4e2④e1+e2,e1-e22.下面三種說法中,正確的是________.①一個平面
【摘要】平面向量的坐標運算(二)一、填空題1.已知三點A(-1,1),B(0,2),C(2,0),若AB→和CD→是相反向量,則D點坐標是________.2.若a=(2cosα,1),b=(sinα,1),且a∥b,則tanα=______.3.已知向量a=(2x+1,4),b=(2-x,3),若
【摘要】§2.向量的加法及其幾何意義【學習目標、細解考綱】1通過實際例子,掌握向量的加法運算,并理解向量加法的平行四邊形法則和三角形法則則其幾何意義。2靈活運用平行四邊形法則和三角形法則進行向量求和運算。3通過本節(jié)學習,培養(yǎng)多角度思考問題的習慣,提高探索問題的能力。【知識梳理、雙基再現(xiàn)】1、向量加法的三角形法則:
2024-12-04 13:46
【摘要】第1章三角函數(shù)任意角、弧度任意角一、填空題1.與405°角終邊相同的角是________.2.若α=45°+k2180°(k∈Z),則α的終邊在第________象限.3.若α是第四象限角,則180°-α是第________象限角.