【總結(jié)】3.兩角和與差的正弦上一節(jié)我們研究了兩角和與差的余弦,一個(gè)自然的想法是兩角和與差的正弦等于什么?即sin(α±β)=?本節(jié)我們就探索這樣的問(wèn)題,并加以應(yīng)用.1.兩角差的正弦公式____________________________________,這個(gè)公式對(duì)任意α、β都成立.答案:sin(α
2024-12-09 03:40
【總結(jié)】1.三角函數(shù)的誘導(dǎo)公式設(shè)0°≤α≤90°,對(duì)于任意一個(gè)0°到360°的角β,以下四種情形中有且僅有一種成立.β=?????α,當(dāng)β∈[0°,90°],180°-α,當(dāng)β∈[90°,180°],
2024-12-09 03:46
【總結(jié)】第3章三角恒等變換3.1兩角和與差的三角函數(shù)3.兩角和與差的余弦思考:cos(α-β)=?有人認(rèn)為cos(α-β)=cosα-cosβ,對(duì)不對(duì)?令α=π3,β=-π6,則cos(α-β)=cosπ2=0,cosα-cosβ=cosπ3-
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)向量加法運(yùn)算及其幾何意義學(xué)業(yè)達(dá)標(biāo)測(cè)試新人教A版必修41.在平行四邊形ABCD中,AB→+CA→+BD→等于()→→→→解析:原式=CA→+AB→+BD→=CD→.答案:D2.若C是線段AB的中點(diǎn),則AC→+BC→=()
2024-12-09 03:43
【總結(jié)】......高中數(shù)學(xué)(平面向量)綜合練習(xí)含解析1.在中,,.若點(diǎn)滿足,則()A.B.C.D.2.已知,,點(diǎn)C在內(nèi),且,,則等于()20090420A.
2025-04-04 05:05
【總結(jié)】高中數(shù)學(xué)(平面向量)綜合練習(xí)含解析1.在中,,.若點(diǎn)滿足,則()A.B.C.D.2.已知,,點(diǎn)C在內(nèi),且,,則等于()20090420A.3B.C.D.3.若向量滿足,且,則()A.4B.3C.2
2025-06-07 23:55
【總結(jié)】1.同角三角函數(shù)關(guān)系已知sinα-cosα=-55,180°<α<270°,你能求出tanα的值嗎?你能化簡(jiǎn)sinθ-cosθtanθ-1嗎???為此,我們有必要研究同角三角函數(shù)的關(guān)系.1.同角三角函數(shù)的平方關(guān)系是________________,使此式成立
【總結(jié)】1.三角函數(shù)的圖象與性質(zhì)情景:前面我們學(xué)習(xí)了三角函數(shù)的誘導(dǎo)公式,我們是借助于單位圓推導(dǎo)出來(lái)的.思考:我們能否借助三角函數(shù)的圖象來(lái)推導(dǎo)或直接得出三角函數(shù)的一些性質(zhì)呢?1.“五點(diǎn)法”作正弦函數(shù)圖象的五個(gè)點(diǎn)是__________、________、________、________、________.答案:(0,0
2024-12-08 20:24
【總結(jié)】3.2二倍角的三角函數(shù)我們知道,兩角和的正弦、余弦、正切公式與兩角差的正弦、余弦、正切公式是可以互相化歸的.當(dāng)兩角相等時(shí),兩角之和便為此角的二倍,那么是否可把和角公式化歸為二倍角公式呢?二倍角公式又有何重要作用呢?1.在S(α+β)中,令________,可得到sin2α=________,它簡(jiǎn)記為S
2024-12-08 02:41
【總結(jié)】向量的減法一、填空題1.化簡(jiǎn)OP→-QP→+PS→+SP→的結(jié)果等于________.2.如圖所示,在梯形ABCD中,AD∥BC,AC與BD交于O點(diǎn),則BA→-BC→-OA→+OD→+DA→=________.3.化簡(jiǎn)(AB→-CD→)-(AC→-BD→)的結(jié)果是____
2024-12-05 10:16
【總結(jié)】abcosab???0?知識(shí)回顧1.定義:平面內(nèi)兩個(gè)非零向量的數(shù)量積(內(nèi)積)的定義=向量夾角的概念:平移兩個(gè)非零向量使它們起點(diǎn)重合,所成圖形中0?≤?≤180?的角稱為兩個(gè)向量的夾角
2024-11-18 08:49
【總結(jié)】1.三角函數(shù)的應(yīng)用情景:如圖,某大風(fēng)車的半徑為2m,每12s旋轉(zhuǎn)一周,它的最低點(diǎn)O離地面m,風(fēng)車圓周上一點(diǎn)A從最低點(diǎn)O開(kāi)始,運(yùn)動(dòng)t(s)后與地面的距離為h(m).思考:你能求出函數(shù)h=f(t)的關(guān)系式嗎?你能畫(huà)出它的圖象嗎?1.已知函數(shù)類型求解析式的方法是________.答案:待
【總結(jié)】課題:向量的減法班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、理解向量減法的含義;2、能用三角形法則和平行四邊形法則求出兩向量的差;【課前預(yù)習(xí)】1、如何用向量加法的三角形法則和平行四邊形法則作兩向量的和?2、??ABOA;???CA
2024-11-20 01:05
【總結(jié)】計(jì)估的布分體總22.??::,.,,C0248257248257單位得到如下樣本日的日最高氣溫月日至月京地區(qū)我們隨機(jī)抽取近年來(lái)北得到的數(shù)據(jù)進(jìn)行分析并對(duì)樣間的日最高氣溫進(jìn)行抽我們對(duì)北京往年這段時(shí)況狀布溫分日北京地區(qū)的氣月日至月為了了解???,狀況呢溫分析比較兩時(shí)間段內(nèi)高怎樣通過(guò)上表中的數(shù)據(jù)C033??3305
2024-11-17 23:36
【總結(jié)】1.函數(shù)y=Asin(ωx+φ)的圖象情景:下表是某地1951—1981年月平均氣溫(華氏):月份123456平均氣溫月份789101112平均氣溫思考:(1)以月份為x軸,以平均氣溫為y軸,描出散點(diǎn).(2)用正弦曲線去擬合這些數(shù)據(jù).(