【總結(jié)】§(1)§(2)§(2)§(1)§二倍角的三角函數(shù)西鄉(xiāng)中學(xué)高一備課組公式例1小結(jié)作業(yè)課堂練習(xí)引入問(wèn)題1二倍角的三角函數(shù)精講精練例2知識(shí)探究:計(jì)算:(1
2024-11-18 08:49
【總結(jié)】3.3幾個(gè)三角恒等式變換是數(shù)學(xué)的重要工具,也是數(shù)學(xué)學(xué)習(xí)的主要對(duì)象之一,三角主要有以下三個(gè)基本的恒等變換:(1)代換;(2)公式的逆向變換和多向變換;(3)引入輔助角的變換.前面已利用誘導(dǎo)公式進(jìn)行過(guò)簡(jiǎn)易的恒等變換,本節(jié)中將綜合運(yùn)用和(差)角公式、倍角公式進(jìn)行更加豐富的三角恒等變換.1.sin2α2=_______
2024-12-05 03:24
【總結(jié)】【金版學(xué)案】2021-2021學(xué)年高中數(shù)學(xué)第1章三角函數(shù)本章知識(shí)整合蘇教版必修4網(wǎng)絡(luò)構(gòu)建三角函數(shù)基本概念的應(yīng)用若角θ的終邊與函數(shù)y=-2|x|的圖象重合,求θ的各三角函數(shù)值.分析:由于y=-2|x|=?????-2x,x≥0,2x,x<0的圖象
2024-12-05 03:23
【總結(jié)】?jī)山呛团c差的正弦、余弦、正切公式????????sincoscossinsin????????????sinsincoscoscos????????????tantantantantan?1???????????sincoscossinsin????
【總結(jié)】課題:三角函數(shù)的誘導(dǎo)公式(1)班級(jí):姓名:一:學(xué)習(xí)目標(biāo)1.通過(guò)學(xué)生的探究,明了三角函數(shù)的誘導(dǎo)公式的來(lái)龍去脈,理解誘導(dǎo)公式的推導(dǎo)過(guò)程;2.通過(guò)誘導(dǎo)公式的具體運(yùn)用,熟練正確地運(yùn)用公式解決一些三角函數(shù)的求值、化簡(jiǎn)和證明問(wèn)題;二:課前預(yù)習(xí)教學(xué)重點(diǎn):
2024-11-20 01:06
【總結(jié)】第1章三角函數(shù)1.1任意角、弧度1.任意角你的手表慢了5分鐘,你是怎樣將它校準(zhǔn)的?假如你的手表快了小時(shí),你應(yīng)當(dāng)如何將它校準(zhǔn)?當(dāng)時(shí)間校準(zhǔn)后,分針旋轉(zhuǎn)了多少度?從該問(wèn)題中可以看出,要正確地表達(dá)“校準(zhǔn)”手表的過(guò)程,需要同時(shí)說(shuō)明分針的旋轉(zhuǎn)量和旋轉(zhuǎn)方向.當(dāng)分針旋轉(zhuǎn)超過(guò)一周后,如何表述這
2024-12-05 10:17
【總結(jié)】課題:二倍角的三角函數(shù)(2)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【【課前預(yù)習(xí)】1、??2sin;??2cos==;??2tan_______________;
2024-11-19 21:43
【總結(jié)】任意角的三角函數(shù)(1)【學(xué)習(xí)目標(biāo)】1.掌握任意角三角函數(shù)的定義,并能借助單位圓理解任意角三角函數(shù)的定義2.會(huì)用三角函數(shù)線表示任意角三角函數(shù)的值3.掌握正弦、余弦、正切函數(shù)的定義域和這三種函數(shù)的值在各象限的符號(hào)【學(xué)習(xí)重點(diǎn)、難點(diǎn)】任意角的正弦、余弦、正切的定義【自主學(xué)習(xí)】一、復(fù)習(xí)舊知,導(dǎo)入新課在初
【總結(jié)】同角三角函數(shù)關(guān)系(一)一、填空題1.若sinα=45,且α是第二象限角,則tanα=______.2.已知sinα=55,則sin4α-cos4α=________.3.已知α是第二象限角,tanα=-12,則cosα=________.4.已知sinαcosα=18且π4&l
【總結(jié)】高中數(shù)學(xué)必修4三角函數(shù)公式大全附帶練習(xí)題三角函數(shù)誘導(dǎo)公式sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosα,cos(π/2-α)=sinα,tan(π/2-α)=cotα,cot(π/2-α)=tanα,sin(π/2+α)=cosα,cos(π/2+α)=-sinα,tan(π/2
2025-04-04 05:10
【總結(jié)】第一篇:高中數(shù)學(xué)-三角函數(shù)公式 兩角和公式 sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsi...
2024-10-11 20:10
【總結(jié)】18132213552)2sin(?????55?5525511954cos4sin???53)sina-cos(a-)cosa-sin(a???2572518257?2518?),,2(a(a2coscos????§三角函數(shù)求值【學(xué)習(xí)目標(biāo)細(xì)解考綱】;
2024-12-02 08:37
【總結(jié)】§三角函數(shù)模型的簡(jiǎn)單應(yīng)用【學(xué)習(xí)目標(biāo)細(xì)解考綱】1、會(huì)用三角函數(shù)解決一些簡(jiǎn)單的問(wèn)題,體會(huì)三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型.2通過(guò)對(duì)三角函數(shù)的應(yīng)用,發(fā)展數(shù)學(xué)應(yīng)用意識(shí),求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模型進(jìn)行思考和作出判斷.【知識(shí)梳理雙基再現(xiàn)】1、三角函數(shù)可以作為描述現(xiàn)實(shí)世界中_________現(xiàn)象的一種數(shù)學(xué)模
【總結(jié)】yOxαP(x,y)α的終邊P(x,y)α的終邊αyOx任意角的三角函數(shù)的定義xrMyMxryyOxαP(x,y)α的終邊P(x,y)α的終邊αyOxxrMyMxrysinyr
2025-08-05 18:30
【總結(jié)】第一章三角函數(shù)正切函數(shù)的圖象與性質(zhì)?α在第一象限時(shí):?正弦線:sinα=MP0?余弦線:cosα=0M0?正切線:tanα=AT0α在第二象限時(shí):正弦線:sinα=M’P’0余弦線:cosα=0M’0正切線: