【摘要】{a,b,c}是空間向量的一個(gè)基底,則可以與向量p=a+b,q=a-b構(gòu)成基底的向量是()A.a(chǎn)B.bC.a(chǎn)+2bD.a(chǎn)+2c解析:選D.∵a+2c,a+b,a-b為不共面向量,∴a+2c與p、q能構(gòu)成一個(gè)基底.OABC中,OA→=
2024-12-09 06:40
【摘要】a=(1,1,0),b=(0,1,1),c=(1,0,1),p=a-b,q=a+2b-c,則p·q=()A.-1B.1C.0D.-2解析:選=a-b=(1,0,-1),q=a+2b-c=(0,3,1),∴p·q
【摘要】,正確的是()A.若a≠b,則|a|≠|(zhì)b|B.若|a||b|,則abC.若a=b,則|a|=|b|D.若|a|=|b|,則a=b或a=-b解析:選;向量不能比較大小,故B錯(cuò);C正確;|a|=|b|說(shuō)明a與b長(zhǎng)度相等,因?yàn)榉较虿欢?,所?/span>
【摘要】空間向量的正交分解及其坐標(biāo)表示【學(xué)習(xí)目標(biāo)】⒈了解空間向量基本定理及其推論;⒉理解空間向量的基底、基向量的概念.理解空間任一向量可用空間不共面的三個(gè)已知向量唯一線性表示奎屯王新敞新疆【自主學(xué)習(xí)】空間向量基本定理與平面向量基本定理類似,區(qū)別僅在于基底中多了一個(gè)向量,從而分解結(jié)果中多了一“項(xiàng)”.證明的思路、步驟也基本相同.我們
【摘要】a、b、c是任意的非零平面向量,且它們相互不共線,下列命題:①(a·b)c-(c·a)b=0;②|a|-|b||a-b|;③(b·a)c-(c·a)b不與c垂直;④(3a+2b)·(3a-2b)=9|a|2-4|b|2.其中
【摘要】a,b是不共線的兩個(gè)向量,λ,μ∈R,且λa+μb=0,則()A.λ=μ=0B.a(chǎn)=b=0C.λ=0,b=0D.μ=0,a=0解析:選A.∵a,b不共線,∴a,b為非零向量,又∵λa+μb=0,∴λ=μ=
【摘要】句是命題的是()A.2021是一個(gè)大數(shù)B.若兩直線平行,則這兩條直線沒(méi)有公共點(diǎn)C.對(duì)數(shù)函數(shù)是增函數(shù)嗎D.a(chǎn)≤15解析:選、D不能判斷真假,不是命題;B能夠判斷真假而且是陳述句,是命題;C是疑問(wèn)句,不是命題.()A.互余的兩個(gè)角不相等B.相等的兩個(gè)角是同位角
2024-12-09 06:41
【摘要】§3.空間向量的正交分解及其坐標(biāo)表示知識(shí)點(diǎn)一向量基底的判斷已知向量{a,b,c}是空間的一個(gè)基底,那么向量a+b,a-b,c能構(gòu)成空間的一個(gè)基底嗎?為什么?解∵a+b,a-b,c不共面,能構(gòu)成空間一個(gè)基底.假設(shè)a+b,a-b,c共面,則存在x,
2024-12-12 01:49
【摘要】解及其坐標(biāo)表示lαOP例1在平面內(nèi)的一條直線,如果和這個(gè)平面的一條斜線的射影垂直,那么它也和這條斜線垂直。已知:如圖,PO,PA分別是平面α的垂線,斜線,AO是PA在平面α內(nèi)的射影,.:,,PAlOAll???求證且?AlαOP.,,OAPOal
2024-11-22 12:14
【摘要】l:x+y-3=0及曲線C:(x-3)2+(y-2)2=2,則點(diǎn)M(2,1)()A.在直線l上,但不在曲線C上B.在直線l上,也在曲線C上C.不在直線l上,也不在曲線C上D.不在直線l上,但在曲線C上解析:選x=2,y=1代入直線l:x+y-3
【摘要】1.(2021·高考陜西卷)設(shè)拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線方程為x=-2,則拋物線的方程是()A.y2=-8xB.y2=-4xC.y2=8xD.y2=4x解析:選x=-2,可知拋物線為焦點(diǎn)在x軸正半軸上的標(biāo)準(zhǔn)方程,同時(shí)得p=4,所以標(biāo)準(zhǔn)方程為y2=2px=
2024-11-22 11:25
【摘要】x2-y2=4的焦點(diǎn)且垂直于實(shí)軸的直線與雙曲線交于A,B兩點(diǎn),則AB的長(zhǎng)為()A.2B.4C.8D.42解析:選x2-y2=4的焦點(diǎn)為(±22,0),把x=22代入并解得y=±2,∴|AB|=2-(-2)=4.2.(2
【摘要】空間向量的正交分解及其坐標(biāo)表示【學(xué)習(xí)目標(biāo)】1.掌握空間向量的正交分解及空間向量基本定理和坐標(biāo)表示;2.掌握空間向量的坐標(biāo)運(yùn)算的規(guī)律;【重點(diǎn)難點(diǎn)】空間向量的正交分解及空間向量基本定理和坐標(biāo)表示【學(xué)習(xí)過(guò)程】一、自主預(yù)習(xí)(預(yù)習(xí)教材P92-96找出疑惑之處)復(fù)習(xí)1:平面向量基本定理:對(duì)平面上的任意一個(gè)向
2024-11-23 17:32
【摘要】1北師大版高中數(shù)學(xué)選修2-1第二章《空間向量與立體幾何》法門(mén)高中姚連省制作2如圖,設(shè)i,j,k是空間三個(gè)兩兩垂直的向量,且有公共起點(diǎn)O。對(duì)于空間任意一個(gè)向量p=OP,設(shè)點(diǎn)Q為點(diǎn)P在i,j所確定的平面上的正投影,由平面基本定理可知,在OQ,k所確定的平面上,存在實(shí)數(shù)z,使得OP=OQ
2024-11-22 13:29