freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

用微分法證明不等式_數(shù)學(xué)與應(yīng)用_數(shù)學(xué)專業(yè)畢業(yè)論文(參考版)

2025-07-09 19:24本頁面
  

【正文】 txtt ???? ? txttx t ????? 0? 即 ??xg 在 0?x , xt? , 0?t 時(shí)單調(diào)遞增 , 又 ? ? tttxxxxx extxtxf ???????????? ??????????????? ???????? ?? 1l i m1l i ml i m 即 ???x 時(shí) , tx ext ???????? ?1 從而當(dāng) 0?x , xt? , 0?t 時(shí) , 01 ??????? ???xtxte (2)當(dāng) 0?t 時(shí) , 01 ??????? ???xtxte (3)當(dāng) xt? 時(shí) , 01 ???????? ?? ?? xxt exte 綜上所述 當(dāng) 0?x , xt? 時(shí) , 01 ??????? ???xtxte 用函數(shù)的凹凸性證明不等式 利用函數(shù)的凹凸性來證明不等式就是根據(jù)函 數(shù)凹凸性定義中的不等式關(guān)系,構(gòu)造一個(gè)凸函數(shù)或凹函數(shù)來證明,由定義及判別法有 ??xf 在某區(qū)間上 (二階可導(dǎo) )為凸 (凹 )函數(shù) ? ? ? ?? ?00 ??? xfxf 10 則有下列不等式成立 ? ? ? ? ? ?? ?nn xfxfxfnn xxxf ??????????? ??? ?? 2121 1 ( ? ? ? ? ? ?? ?nn xfxfxfnn xxxf ??????????? ??? ?? 2121 1) 由此可證明一些不等式,特別是含有兩個(gè)或兩個(gè)以上變元的 . 例 設(shè) ? ?nixi ,2,10 ??? , 證明 nxxxxxxxxxn nnnn???????212121111 ?? 其中等號當(dāng)且僅當(dāng) nxxxx ???? ?321 時(shí)成立 . 分析 將不等式各部分同時(shí)取對數(shù),這時(shí)左邊的 不等式可變?yōu)? ???????? ????????nn xxxnn xxx 1ln1ln1ln1111ln2121 ?? 從而可以通過函數(shù) ? ? xxf ln?? 為 ? ???,0 上的凸函數(shù)再結(jié)合詹森不等式得上式 . 另一方面,通過將不等式的各部分同時(shí)取對數(shù)可將右邊的不等式變?yōu)? ? ? n xxxxxxn nn ?? ?????? 2121 lnlnlnln1 那么可以通過函數(shù) ? ? xxg ln? 為 ? ???,0 上的凹函數(shù)再結(jié)合詹森不等式得上式. 證明 (1) 設(shè) ? ? ? ?0ln ??? xxxf , 則 ? ? xxf 139。 的形式得:極值的可能點(diǎn)為 0?t , ??t . 那么當(dāng) nt? 時(shí) , ??tf 的最小值只能在 0?t , ??t , nt? , ???t 中取到 . 而 ?? 00?f ? ? 1112 ???????? ????? nnnennnfnn ? ? ??????????? ?????? ????? ??????nttt ntenttf 11limlim 2 ? ? nnenf ?????? ????? ??? ? 112 ?????? ????? nn ?? 1212 8 22221nnn ??? ???????? ?? ? ?11222 ????????? ?? nnn ?? 0? ? ? ? ? 00mi n ??? ? ftfnt 所以 ? ? ? ? 0m in112 ???????? ????? ? tfntenttf ntnt 綜合上述 當(dāng) nt? 時(shí), tnt entnte ?? ???????? ??21 用單調(diào)極限的方法證明不等式 利用單調(diào)極限來證明不等式主要的是求函數(shù)在某一點(diǎn)的極限值,然后根據(jù)單 調(diào)函數(shù)的性質(zhì)來進(jìn)行判斷 . 利用引理 2 的引申可以來證明一些不等式,從而使證明過程簡潔易懂 . 例 證明 : 當(dāng) 0?x , xt? 時(shí),有 01 ??????? ???xtxte 分析 當(dāng) 0?t 或 xt? 時(shí) , 不等式顯然成立 . 只須證明 0?x , xt? , 0?t 的情況 , 因此只須證明 ??x 時(shí) , 有 ? ? tx extxf ???????? ?? 1 證明 (1)當(dāng) 0?x , xt? , 0?t 時(shí) , 令 ? ? xxtxf ?????? ?? 1, ? ? ? ? ? ?? ?xtxxxtxxtxfxgx lnln1ln1lnln ?????????? ????????? ??? 那么 ? ? ? ? ?????? ??????? xtxxxtxxg 11lnln39。 ?xf , 即當(dāng)函數(shù)不具有單調(diào)性時(shí) , 可以考慮用極值的方法證明 . 例 設(shè) n 為自然數(shù) , 試證 tnt entnte ?? ???????? ??21
點(diǎn)擊復(fù)制文檔內(nèi)容
研究報(bào)告相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1