【摘要】導(dǎo)數(shù)與函數(shù)的單調(diào)性教學(xué)過程:一.創(chuàng)設(shè)情景函數(shù)是客觀描述世界變化規(guī)律的重要數(shù)學(xué)模型,研究函數(shù)時(shí),了解函數(shù)的贈與減、增減的快與慢以及函數(shù)的最大值或最小值等性質(zhì)是非常重要的.通過研究函數(shù)的這些性質(zhì),我們可以對數(shù)量的變化規(guī)律有一個(gè)基本的了解.下面,我們運(yùn)用導(dǎo)數(shù)研究函數(shù)的性質(zhì),從中體會導(dǎo)數(shù)在研究函數(shù)中的作用。二.新課講授1.問題:圖(1),
2024-11-23 23:16
【摘要】導(dǎo)數(shù)與函數(shù)的單調(diào)性一、學(xué)習(xí)目標(biāo)1.會從幾何直觀探索并了解函數(shù)的單調(diào)性與其導(dǎo)數(shù)之間的關(guān)系,并會靈活應(yīng)用;2.會用導(dǎo)數(shù)判斷或證明函數(shù)的單調(diào)性;3.通過對函數(shù)單調(diào)性的研究,加深對函數(shù)導(dǎo)數(shù)的理解,提高用導(dǎo)數(shù)解決實(shí)際問題的能力.二、學(xué)習(xí)重、難點(diǎn)靈活應(yīng)用導(dǎo)數(shù)研究與函數(shù)單調(diào)性有關(guān)的問題,并能運(yùn)用數(shù)形結(jié)合的思想方法.三、學(xué)習(xí)過程1.復(fù)
【摘要】計(jì)算導(dǎo)數(shù)教學(xué)過程:一、復(fù)習(xí)1、導(dǎo)數(shù)的定義;2、導(dǎo)數(shù)的幾何意義;3、導(dǎo)函數(shù)的定義;4、求函數(shù)的導(dǎo)數(shù)的流程圖。(1)求函數(shù)的改變量)()(xfxxfy?????(2)求平均變化率xxfxxfxy???????)()((3)取極限,得導(dǎo)數(shù)/y=()fx??xyx????0lim本節(jié)課我們將
2024-11-23 20:36
【摘要】第1課時(shí)導(dǎo)數(shù)與函數(shù)的單調(diào)性..對于函數(shù)y=x3-3x,如何判斷單調(diào)性呢?你能畫出該函數(shù)的圖像嗎?定義法是解決問題的最根本方法,但定義法較繁瑣,又不能畫出它的圖像,那該如何解決呢?問題1:增函數(shù)和減函數(shù)一般地,設(shè)函數(shù)f(x)的定義域?yàn)镮:如果對于定義域I內(nèi)某個(gè)區(qū)間D上的
2024-11-23 23:17
【摘要】-*-第四章導(dǎo)數(shù)應(yīng)用-*-§1函數(shù)的單調(diào)性與極值-*-導(dǎo)數(shù)與函數(shù)的單調(diào)性首頁XINZHIDAOXUE新知導(dǎo)學(xué)ZHONGNANTANJIU重難探究DANGTANGJIANCE當(dāng)堂檢測學(xué)習(xí)目標(biāo)思維脈絡(luò)1.結(jié)合實(shí)例,借助幾何直觀探索并了解函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系.
2024-11-21 08:43
【摘要】復(fù)習(xí)總結(jié):導(dǎo)數(shù)應(yīng)用1.了解導(dǎo)數(shù)概念的某些實(shí)際背景(如瞬時(shí)速度,加速度,光滑曲線切線的斜率等);掌握函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義;理解導(dǎo)函數(shù)的概念.2.熟記八個(gè)基本導(dǎo)數(shù)公式(c,mx(m為有理數(shù)),xxaexxaxxlog,ln,,,cos,sin的導(dǎo)數(shù));掌握兩個(gè)函數(shù)和、差、積、商的求導(dǎo)法則,了解復(fù)合函數(shù)的求導(dǎo)法則
2024-12-09 06:32
【摘要】導(dǎo)數(shù)應(yīng)用第四章§1函數(shù)的單調(diào)性與極值導(dǎo)數(shù)與函數(shù)的單調(diào)性第四章課堂典例探究2課時(shí)作業(yè)3課前自主預(yù)習(xí)1課前自主預(yù)習(xí)結(jié)合實(shí)例,借助幾何直觀探索并了解函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求不超過三次的多項(xiàng)式函數(shù)的單調(diào)區(qū)間.函數(shù)的單調(diào)性與導(dǎo)函數(shù)正負(fù)的關(guān)
2024-11-20 23:23
【摘要】計(jì)算導(dǎo)數(shù)學(xué)習(xí)目標(biāo):能夠用導(dǎo)數(shù)的定義求幾個(gè)常用初等函數(shù)的導(dǎo)數(shù)。一、自學(xué)、思考、練習(xí)憶一憶:1、函數(shù)在一點(diǎn)處導(dǎo)數(shù)的定義;2、導(dǎo)數(shù)的幾何意義;[3、導(dǎo)函數(shù)的定義;4、求函數(shù)的導(dǎo)數(shù)的步驟。二、參與學(xué)習(xí)試一試:1、你能推導(dǎo)下列函數(shù)的導(dǎo)數(shù)嗎?(1)()fxc?(2)()fxx?(
2024-12-09 01:49
【摘要】奎屯王新敞新疆知識回顧1、一般地,設(shè)函數(shù)y=f(x)在某個(gè)區(qū)間內(nèi)可導(dǎo),則函數(shù)在該區(qū)間如果f′(x)0,如果f′(x)0,則f(x)為增函數(shù);則f(x)為減函數(shù).2、用導(dǎo)數(shù)法確定函數(shù)的單調(diào)性時(shí)的步驟是:(1)(3)求
2024-11-21 17:38
【摘要】函數(shù)的極值【學(xué)習(xí)要求】了解函數(shù)極值的定義,會從幾何圖形直觀理解函數(shù)的極值與其導(dǎo)數(shù)的關(guān)系,增強(qiáng)自己的數(shù)形結(jié)合意識;掌握利用導(dǎo)數(shù)求函數(shù)的極值的一般步驟.【提問引入】請同學(xué)們觀察下圖.極值的概念:
2024-12-09 06:34
【摘要】知識歸納:導(dǎo)數(shù)的計(jì)算一、幾個(gè)常用函數(shù)的導(dǎo)數(shù)1C′=0(C為常數(shù))2(xn)′=nxn-1(n∈Q)3(sinx)′=cosx4(cosx)′=-sinx=C(C是常數(shù)),求y′.解:y=f(x)=C,y=f(x+Δx)-f(x)=C-C=0,xy??=0.Y′=C′=xy
【摘要】變化的快慢與變化率1、本節(jié)教材的地位與作用:變化率對理解導(dǎo)數(shù)概念及其幾何意義有著重要作用.是導(dǎo)數(shù)概念產(chǎn)生的基礎(chǔ).充分掌握好變化率這個(gè)概念,為順利過渡瞬時(shí)變化率,體會導(dǎo)數(shù)思想與內(nèi)涵做好準(zhǔn)備工作.通過對大量實(shí)例的分析,引導(dǎo)學(xué)生經(jīng)歷由物理學(xué)中的平均速度到其它事例的平均變化率過程.所以變化率是一個(gè)重要的過渡性概念.對變化率概念意義的建構(gòu)對導(dǎo)數(shù)概念的學(xué)
【摘要】導(dǎo)數(shù)的概念及其幾何意義變化率問題:已知函數(shù)y=f(x),令Δx=21xx?,21()()yfxfx??,則當(dāng)0x?時(shí),比值2121()()fxfxxx??=yx,稱作函數(shù)f(x)從1x到2x得平均變化率.:物體在某一時(shí)刻的速度.Δx=0xx?,函數(shù)的增量000()
【摘要】導(dǎo)數(shù)在實(shí)際問題中的應(yīng)用目標(biāo)認(rèn)知學(xué)習(xí)目標(biāo):1.會從幾何直觀了解函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系;能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間,對多項(xiàng)式函數(shù)一般不超過三次.2.了解函數(shù)在某點(diǎn)取得極值的必要條件(導(dǎo)數(shù)在極值點(diǎn)兩端異號)和充分條件();會用導(dǎo)數(shù)求函數(shù)的極大值、極小值,對多項(xiàng)式函數(shù)一般不超過三次.3.會求閉區(qū)間上函數(shù)的
2024-12-08 23:43
【摘要】導(dǎo)數(shù)的概念及其幾何意義教學(xué)目標(biāo):1.導(dǎo)數(shù)的概念及幾何意義;2.求導(dǎo)的基本方法;3.導(dǎo)數(shù)的應(yīng)用.教學(xué)重點(diǎn):導(dǎo)數(shù)的綜合應(yīng)用;教學(xué)難點(diǎn):導(dǎo)數(shù)的綜合應(yīng)用.一.知識梳理1.導(dǎo)數(shù)的概念及幾何意義.2.求導(dǎo)的基本方法①定義法:??xf?=????xxfxxfxyx????????