【摘要】§(4)正弦函數(shù)的周期性、奇偶性、對稱性(課前預習案)班級:___姓名:________編寫:一、新知導學1、周期函數(shù)的定義:對于函數(shù)f(x),如果存在一個________,使得定義域內(nèi)的_______,都滿足____________,那么函數(shù)f(x)就叫做___________,_____叫做這個
2024-11-22 16:46
【摘要】2020年高中數(shù)學函數(shù)的奇偶性學案新人教B版必修1一、三維目標:知識與技能:使學生理解奇函數(shù)、偶函數(shù)的概念,學會運用定義判斷函數(shù)的奇偶性。過程與方法:通過設置問題情境培養(yǎng)學生判斷、推斷的能力。情感態(tài)度與價值觀:通過繪制和展示優(yōu)美的函數(shù)圖象來陶冶學生的情操.通過組織學生分組討論,培養(yǎng)學生主動交流的合作精神,使學生學
2024-11-23 23:24
【摘要】嚴守俊216355813529652696《函數(shù)的奇偶性周期性對稱性》第10頁共10頁 抽象函數(shù)的對稱性、奇偶性與周期性常用結(jié)論:抽象函數(shù)是指沒有給出具體的函數(shù)解析式或圖像,只給出一些函數(shù)符號及其滿足的條件的函數(shù),如函數(shù)的定義域,解析遞推式
2025-05-30 22:48
【摘要】......抽象函數(shù)的周期性與對稱性知識點梳理一、抽象函數(shù)的對稱性定理1.若函數(shù)定義域為,且滿足條件:,則函數(shù)的圖象關于直線對稱。推論1.若函數(shù)定義域為,且滿足條件:,則函數(shù)的圖像關于直線對稱。推論
2025-05-19 05:00
【摘要】函數(shù)奇偶性、對稱性與周期性奇偶性、對稱性和周期性是函數(shù)的重要性質(zhì),下面總結(jié)關于它們的一些重要結(jié)論及運用它們解決抽象型函數(shù)的有關習題。一、幾個重要的結(jié)論(一)函數(shù)圖象本身的對稱性(自身對稱)2、的圖象關于直線對稱。3、的圖象關于直線對稱。4、的圖象關于直線對稱。5、的圖象關于點對稱。6、
2025-06-21 20:22
【摘要】......函數(shù)對稱性、周期性和奇偶性關嶺民中數(shù)學組(一)、同一函數(shù)的函數(shù)的奇偶性與對稱性:(奇偶性是一種特殊的對稱性)1、奇偶性:(1)奇函數(shù)關于(0,0)對稱,奇函數(shù)有關系式(2)偶函數(shù)關于y(即x=0)軸對稱,偶函
2025-06-19 04:13
【摘要】函數(shù)單調(diào)性、奇偶性、對稱性、周期性解析一、函數(shù)的單調(diào)性1.單調(diào)函數(shù)與嚴格單調(diào)函數(shù)設為定義在上的函數(shù),若對任何,當時,總有(ⅰ),則稱為上的增函數(shù),特別當且僅當嚴格不等式成立時稱為上的嚴格單調(diào)遞增函數(shù)。(ⅱ),則稱為上的減函數(shù),特別當且僅當嚴格不等式成立時稱為上的嚴格單調(diào)遞減函數(shù)。2.函數(shù)單調(diào)的充要條件★若為區(qū)間上的單調(diào)遞增函數(shù),、為區(qū)間內(nèi)兩任意值,那么有:或
2025-06-19 08:23
【摘要】§正弦函數(shù)的性質(zhì)(課前預習案)班級:___姓名:________編寫:一、新知導學1.請根據(jù)正弦函數(shù)圖象sinyx?的定義域是______;值域是______;當x?______________時,maxy?____;當x=________________時,miny?
【摘要】(6)正弦型函數(shù)y=Asin(ωx+φ)的性質(zhì)(課前預習案)班級:___姓名:________編寫:一、新知導學1.y=sinx所有點的縱坐標___________(當A1時)或__________(當0A1)到原來的A倍(橫坐標不變)而得到的函數(shù)ARxxAy(,sin??
2024-11-22 16:45
2024-11-23 19:27
【摘要】......函數(shù)對稱性、周期性和奇偶性規(guī)律一、同一函數(shù)的周期性、對稱性問題(即函數(shù)自身)1、周期性:對于函數(shù),如果存在一個不為零的常數(shù)T,使得當x取定義域內(nèi)的每一個值時,都有都成立,那么就把函數(shù)叫做周期函數(shù),不為零的常數(shù)T叫做這
2025-06-19 03:50
【摘要】......2.定義在上的函數(shù)滿足.當時,,當時,,則()(A)(B)(C)(D)【答案】A【解析】試題分析:根據(jù)可知:是周期為的周期函數(shù),且,,所以答案為A.考點:1.函數(shù)的周期
2025-03-27 12:18
【摘要】......函數(shù)單調(diào)性、奇偶性、周期性和對稱性的綜合應用例1、設f(x)是定義在R上的奇函數(shù),且的圖象關于直線對稱,則f(1)+f(2)+f(3)+f(4)+f(5)=_0_______________.【考點分析
2025-06-19 08:18
【摘要】奇偶性班級:__________姓名:__________設計人__________日期__________課前預習·預習案【溫馨寄語】希望是堅韌的拐杖,忍耐是旅行袋,帶上他們,你可以登上永恒之旅,走遍全世界。【學習目標】1.利用函數(shù)的奇偶性解決一些簡單的問題,2.掌握奇偶性的判斷方法.3.理解函數(shù)的奇
2024-12-02 00:22
【摘要】......抽象函數(shù)的對稱性、奇偶性與周期性總結(jié)及習題:抽象函數(shù)是指沒有給出具體的函數(shù)解析式或圖像,只給出一些函數(shù)符號及其滿足的條件的函數(shù),如函數(shù)的定義域,解析遞推式,
2025-03-29 00:35