【摘要】1法門高中姚連省2前面,我們把平面向量推廣到空間向量向量漸漸成為重要工具立體幾何問題(研究的基本對(duì)象是點(diǎn)、直線、平面以及由它們組成的空間圖形)從今天開始,我們將進(jìn)一步來體會(huì)向量這一工具在立體幾何中的應(yīng)用.
2024-11-22 13:29
【摘要】空間“角度”問題法門高中姚連省一、復(fù)習(xí)引入用空間向量解決立體幾何問題的“三步曲”。(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點(diǎn)、直線、平面,把立體幾何問題轉(zhuǎn)化為向量問題;(2)通過向量運(yùn)算,研究點(diǎn)、直線、平面之間的位置關(guān)系以及它們之間距離和夾角等問題;(3)把向量的運(yùn)算結(jié)果“翻譯”成相應(yīng)的幾何
【摘要】1法門高中姚連省立體幾何中的向量方法(四)----利用向量解決平行與垂直問題2一、復(fù)習(xí)1、用空間向量解決立體幾何問題的“三步曲”(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點(diǎn)、直線、平面,把立體幾何問題轉(zhuǎn)化為向量問題;(化為向量問題)
【摘要】1法門高中姚連省2一、復(fù)習(xí)引入用空間向量解決立體幾何問題的“三步曲”。(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點(diǎn)、直線、平面,把立體幾何問題轉(zhuǎn)化為向量問題;(化為向量問題)(2)通過向量運(yùn)算,研究點(diǎn)、直線、平面之間的位置關(guān)系以及它們之間距離和夾角等問題;
【摘要】平面向量空間向量推廣到立體幾何問題(研究的基本對(duì)象是點(diǎn)、直線、平面以及由它們組成的空間圖形)向量漸漸成為重要工具從今天開始,我們將進(jìn)一步來體會(huì)向量這一工具在立體幾何中的應(yīng)用.前面,我們把。+=,使,實(shí)數(shù)對(duì)共面的充要條件是存在與向量不共線,則向量如果兩個(gè)向量byaxp
2024-11-21 12:02
【摘要】第二章一、選擇題1.下列說法中正確的是()A.任意兩個(gè)空間向量都可以比較大小B.方向不同的空間向量不能比較大小,但同向的空間向量可以比較大小C.空間向量的大小與方向有關(guān)D.空間向量的??梢员容^大小[答案]D[解析]任意兩個(gè)空間向量,不論同向還是不同向均不存在大小關(guān)系,故A、B不正確;
2024-12-04 11:35
【摘要】空間“綜合”問題向量法解立體幾何問題的優(yōu)點(diǎn):1.思路容易找,甚至可以公式化;一般充分結(jié)合圖形發(fā)現(xiàn)向量關(guān)系或者求出(找出)平面的法向量、直線的方向向量,利用這些向量借助向量運(yùn)算就可以解決問題.2.不需要添輔助線和進(jìn)行困難的幾何證明;3.若坐標(biāo)系容易建立,更是水到渠成.復(fù)習(xí)引入如圖,已知:
2024-11-22 12:14
【摘要】ZPZ空間“角度”問題設(shè)直線,lm的方向向量分別為,abla?mla?mb???若兩直線所成的角為,則,lm(0)2???≤≤cosabab???復(fù)習(xí)引入①方向向量法將二面角轉(zhuǎn)化為二面角的兩個(gè)面的
【摘要】ZPZ空間“距離”問題一、復(fù)習(xí)引入用空間向量解決立體幾何問題的“三步曲”。(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點(diǎn)、直線、平面,把立體幾何問題轉(zhuǎn)化為向量問題;(2)通過向量運(yùn)算,研究點(diǎn)、直線、平面之間的位置關(guān)系以及它們之間距離和夾角等問題;(3)把向量的運(yùn)算結(jié)果“翻譯”成相應(yīng)的幾何意義。(化為向量
【摘要】第一課時(shí):§立體幾何中的向量方法(一)教學(xué)要求:向量運(yùn)算在幾何證明與計(jì)算中的應(yīng)用.掌握利用向量運(yùn)算解幾何題的方法,并能解簡(jiǎn)單的立體幾何問題.教學(xué)重點(diǎn):向量運(yùn)算在幾何證明與計(jì)算中的應(yīng)用.教學(xué)難點(diǎn):向量運(yùn)算在幾何證明與計(jì)算中的應(yīng)用教學(xué)過程:一、復(fù)習(xí)引入1.用向量解決立體幾何中的一些典型問題的基本思考方法是:⑴
2024-12-04 04:03
【摘要】北師大版高中數(shù)學(xué)選修2-1第二章《空間向量與立體幾何》扶風(fēng)縣法門高中姚連省第一課時(shí)平面向量知識(shí)復(fù)習(xí)一、教學(xué)目標(biāo):復(fù)習(xí)平面向量的基礎(chǔ)知識(shí),為學(xué)習(xí)空間向量作準(zhǔn)備二、教學(xué)重點(diǎn):平面向量的基礎(chǔ)知識(shí)。教學(xué)難點(diǎn):運(yùn)用向量知識(shí)解決具體問題三、教學(xué)方法:探究歸納,講練結(jié)合四、教學(xué)過程(一)、基本概念
2024-12-12 09:07
【摘要】第3章——空間向量的數(shù)量積[學(xué)習(xí)目標(biāo)],掌握兩個(gè)向量的數(shù)量積的概念、性質(zhì)和計(jì)算方法及運(yùn)算規(guī)律.,會(huì)用它解決立體幾何中一些簡(jiǎn)單的問題.1預(yù)習(xí)導(dǎo)學(xué)挑戓自我,點(diǎn)點(diǎn)落實(shí)2課堂講義重點(diǎn)難點(diǎn),個(gè)個(gè)擊破3當(dāng)堂檢測(cè)當(dāng)堂訓(xùn)練,體驗(yàn)成功[知識(shí)鏈接
2024-11-22 08:08
【摘要】1.如圖3-5,已知兩條異面直線所成的角為θ,在直線a、b上分別取E、F,已知A’E=m,AF=n,EF=l,求公垂線AA′的長(zhǎng)d.EFEAAAAF?????解:22()EFEAAAAF??????2222()EAAAAFE
2024-11-22 00:19
【摘要】第3章——空間向量及其運(yùn)算空間向量及其線性運(yùn)算[學(xué)習(xí)目標(biāo)],幾何表示法、字母表示法...1預(yù)習(xí)導(dǎo)學(xué)挑戓自我,點(diǎn)點(diǎn)落實(shí)2課堂講義重點(diǎn)難點(diǎn),個(gè)個(gè)擊破3當(dāng)堂檢測(cè)當(dāng)堂訓(xùn)練,體驗(yàn)成功[知識(shí)鏈接]觀察正方體中過同一個(gè)頂點(diǎn)的
【摘要】第3章——空間向量的應(yīng)用直線的方向向量與平面的法向量[學(xué)習(xí)目標(biāo)]..1預(yù)習(xí)導(dǎo)學(xué)挑戰(zhàn)自我,點(diǎn)點(diǎn)落實(shí)2課堂講義重點(diǎn)難點(diǎn),個(gè)個(gè)擊破3當(dāng)堂檢測(cè)當(dāng)堂訓(xùn)練,體驗(yàn)成功[知識(shí)鏈接],它們乊間有何關(guān)系?答:相互平行.?