【摘要】成才之路·數(shù)學(xué)路漫漫其修遠(yuǎn)兮吾將上下而求索北師大版·選修1-1變化率與導(dǎo)數(shù)第三章章末歸納總結(jié)第三章知識(shí)結(jié)構(gòu)2誤區(qū)警示3自主演練5知識(shí)梳理1題型探究4知識(shí)梳理1.平均變化率的定
2024-11-20 23:22
【摘要】-*-本章整合網(wǎng)絡(luò)構(gòu)建專題探究變化率與導(dǎo)數(shù)變化率平均變化率瞬時(shí)變化率導(dǎo)數(shù)導(dǎo)數(shù)的概念導(dǎo)數(shù)的幾何意義導(dǎo)數(shù)的計(jì)算定義法公式法導(dǎo)數(shù)的四則運(yùn)算法則
2024-11-21 08:42
【摘要】導(dǎo)數(shù)的概念及其幾何意義變化率問(wèn)題:已知函數(shù)y=f(x),令Δx=21xx?,21()()yfxfx??,則當(dāng)0x?時(shí),比值2121()()fxfxxx??=yx,稱作函數(shù)f(x)從1x到2x得平均變化率.:物體在某一時(shí)刻的速度.Δx=0xx?,函數(shù)的增量000()
2024-11-23 20:36
【摘要】計(jì)算導(dǎo)數(shù)教學(xué)過(guò)程:一、復(fù)習(xí)1、導(dǎo)數(shù)的定義;2、導(dǎo)數(shù)的幾何意義;3、導(dǎo)函數(shù)的定義;4、求函數(shù)的導(dǎo)數(shù)的流程圖。(1)求函數(shù)的改變量)()(xfxxfy?????(2)求平均變化率xxfxxfxy???????)()((3)取極限,得導(dǎo)數(shù)/y=()fx??xyx????0lim本節(jié)課我們將
【摘要】變化的快慢與變化率一、教學(xué)目標(biāo)(1)理解瞬時(shí)速度,會(huì)運(yùn)用瞬時(shí)速度的定義求物體在某一時(shí)刻的瞬時(shí)速度(2)理解瞬時(shí)變化率概念,實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問(wèn)題的能力二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):瞬時(shí)速度,瞬時(shí)變化率概念及計(jì)算難點(diǎn):瞬時(shí)變化率的實(shí)際意義和數(shù)學(xué)意義三、教學(xué)過(guò)程(一)、復(fù)習(xí)引入1、什么叫做平均變化
2024-11-23 23:16
【摘要】知識(shí)歸納:導(dǎo)數(shù)的計(jì)算一、幾個(gè)常用函數(shù)的導(dǎo)數(shù)1C′=0(C為常數(shù))2(xn)′=nxn-1(n∈Q)3(sinx)′=cosx4(cosx)′=-sinx=C(C是常數(shù)),求y′.解:y=f(x)=C,y=f(x+Δx)-f(x)=C-C=0,xy??=0.Y′=C′=xy
【摘要】變化的快慢與變化率1、本節(jié)教材的地位與作用:變化率對(duì)理解導(dǎo)數(shù)概念及其幾何意義有著重要作用.是導(dǎo)數(shù)概念產(chǎn)生的基礎(chǔ).充分掌握好變化率這個(gè)概念,為順利過(guò)渡瞬時(shí)變化率,體會(huì)導(dǎo)數(shù)思想與內(nèi)涵做好準(zhǔn)備工作.通過(guò)對(duì)大量實(shí)例的分析,引導(dǎo)學(xué)生經(jīng)歷由物理學(xué)中的平均速度到其它事例的平均變化率過(guò)程.所以變化率是一個(gè)重要的過(guò)渡性概念.對(duì)變化率概念意義的建構(gòu)對(duì)導(dǎo)數(shù)概念的學(xué)
【摘要】復(fù)習(xí)總結(jié):導(dǎo)數(shù)應(yīng)用1.了解導(dǎo)數(shù)概念的某些實(shí)際背景(如瞬時(shí)速度,加速度,光滑曲線切線的斜率等);掌握函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義;理解導(dǎo)函數(shù)的概念.2.熟記八個(gè)基本導(dǎo)數(shù)公式(c,mx(m為有理數(shù)),xxaexxaxxlog,ln,,,cos,sin的導(dǎo)數(shù));掌握兩個(gè)函數(shù)和、差、積、商的求導(dǎo)法則,了解復(fù)合函數(shù)的求導(dǎo)法則
2024-12-09 06:32
【摘要】變化的快慢與變化率學(xué)習(xí)目標(biāo):了解瞬時(shí)速度的定義,能夠區(qū)分平均速度和瞬時(shí)速度.能求出簡(jiǎn)單函數(shù)在某一點(diǎn)的導(dǎo)數(shù)(瞬時(shí)變化率)學(xué)習(xí)重點(diǎn):導(dǎo)數(shù)概念的形成,導(dǎo)數(shù)內(nèi)涵的理解一、自主學(xué)習(xí)[問(wèn)題1]一般地,函數(shù)12(),,yfxxx?是其定義域內(nèi)不同的兩點(diǎn),那么函數(shù)的變化率可以用式子表示,我們把這個(gè)式子稱為函數(shù)
2024-12-09 06:39
【摘要】計(jì)算導(dǎo)數(shù)學(xué)習(xí)目標(biāo):能夠用導(dǎo)數(shù)的定義求幾個(gè)常用初等函數(shù)的導(dǎo)數(shù)。一、自學(xué)、思考、練習(xí)憶一憶:1、函數(shù)在一點(diǎn)處導(dǎo)數(shù)的定義;2、導(dǎo)數(shù)的幾何意義;[3、導(dǎo)函數(shù)的定義;4、求函數(shù)的導(dǎo)數(shù)的步驟。二、參與學(xué)習(xí)試一試:1、你能推導(dǎo)下列函數(shù)的導(dǎo)數(shù)嗎?(1)()fxc?(2)()fxx?(
2024-12-09 01:49
【摘要】-*-本章整合網(wǎng)絡(luò)構(gòu)建專題探究導(dǎo)數(shù)應(yīng)用導(dǎo)數(shù)與函數(shù)的單調(diào)性導(dǎo)數(shù)與函數(shù)的極值導(dǎo)數(shù)與函數(shù)的最值導(dǎo)數(shù)的實(shí)際應(yīng)用專題探究網(wǎng)絡(luò)構(gòu)建專題一專題二專題三專題四專題一函數(shù)與方程思想本章中涉及函數(shù)與方程的聯(lián)系如下:題型函數(shù)方程(組)或不等式已知極值求參數(shù)f
【摘要】變化的快慢與變化率【例1】已知質(zhì)點(diǎn)M按規(guī)律s=2t2+3作直線運(yùn)動(dòng)(位移單位:cm,時(shí)間單位:s),當(dāng)t=2,Δt=,求ts??;(2)當(dāng)t=2,Δt=,求ts??;(3)求質(zhì)點(diǎn)M在t=2時(shí)的瞬時(shí)速度【例2】某一物體的運(yùn)動(dòng)規(guī)律為s=t3-t2+2t+5(其中s表示位移,t表
【摘要】-*-第三章變化率與導(dǎo)數(shù)-*-§1變化的快慢與變化率首頁(yè)XINZHIDAOXUE新知導(dǎo)學(xué)ZHONGNANTANJIU重難探究DANGTANGJIANCE當(dāng)堂檢測(cè)學(xué)習(xí)目標(biāo)思維脈絡(luò)1.理解函數(shù)平均變化率與瞬時(shí)變化率的概念.2.會(huì)求給定函數(shù)在某個(gè)區(qū)間上的平均變化率,并能根據(jù)函
2024-11-20 23:23
【摘要】導(dǎo)數(shù)與函數(shù)的單調(diào)性教學(xué)過(guò)程:一.創(chuàng)設(shè)情景函數(shù)是客觀描述世界變化規(guī)律的重要數(shù)學(xué)模型,研究函數(shù)時(shí),了解函數(shù)的贈(zèng)與減、增減的快與慢以及函數(shù)的最大值或最小值等性質(zhì)是非常重要的.通過(guò)研究函數(shù)的這些性質(zhì),我們可以對(duì)數(shù)量的變化規(guī)律有一個(gè)基本的了解.下面,我們運(yùn)用導(dǎo)數(shù)研究函數(shù)的性質(zhì),從中體會(huì)導(dǎo)數(shù)在研究函數(shù)中的作用。二.新課講授1.問(wèn)題:圖(1),
【摘要】導(dǎo)數(shù)與函數(shù)的單調(diào)性一、學(xué)習(xí)目標(biāo)1.會(huì)從幾何直觀探索并了解函數(shù)的單調(diào)性與其導(dǎo)數(shù)之間的關(guān)系,并會(huì)靈活應(yīng)用;2.會(huì)用導(dǎo)數(shù)判斷或證明函數(shù)的單調(diào)性;3.通過(guò)對(duì)函數(shù)單調(diào)性的研究,加深對(duì)函數(shù)導(dǎo)數(shù)的理解,提高用導(dǎo)數(shù)解決實(shí)際問(wèn)題的能力.二、學(xué)習(xí)重、難點(diǎn)靈活應(yīng)用導(dǎo)數(shù)研究與函數(shù)單調(diào)性有關(guān)的問(wèn)題,并能運(yùn)用數(shù)形結(jié)合的思想方法.三、學(xué)習(xí)過(guò)程1.復(fù)