【正文】
1 Yager,., “On ordered weighted averaging aggregation operators in multicriteria decision making, ” IEEE Transactions on Systems, Man and Cyberics 18, 183190,1988 2 Yager. “Quantifier guided aggregation using OWA aggregation”. International Journal of Intelligent Systems , 1996 3 Yager and , Operations for Granular Computing: Mixing Words and Numbers, Proceedings of the FUZZIEEE World Congress on Computational Intelligence, Anchorage, 1988,123128 4 Witlold Pedrycz. OWABased puting:learning algorithms. 5 David L. La Red. etc. OWA Aggregation with Soft Majority Operators. 參考文獻 6 Yager. Heavy OWA Operators. Fuzzy optimization and decision making,1, 379397,2023 7 Yager, Generalized OWA Aggregation Operators. Fuzzy optimization and decision making,3, 93107, 2023 8 Learning Weights in the Generalized OWA Operators. Fuzzy optimization and decision making,4, 119130,2023 9 Francisco Chiclana, etc. Some induced oredered weighted averaging operators and their use for solving group decision making problems based on fuzzy preference relations,2023 10 Yager. Choquet aggregation using order inducing variables, 2023 演講完畢,謝謝觀看! 。 二者的權(quán)重都可以由一個 BUM函數(shù)產(chǎn)生。與 OWA不同之處在于放松了對權(quán)重的要求。 ? ?1, if n i a??? ?,iif p p ICIA(文獻 10) ? ?12, , , nA A A A? 是參與融合的水平集,假定我們所需要的 Choquet融合中的模糊測度 存在,并且參與融合的每一個 都可以由一個二元組 表示, 稱為順序?qū)б兞?,? 稱為自變量。 ? ?? ? ? ?? ?? ?? ?? ? ? ?1211 1 2 211, , , , 0 , 1 , 1, , , , , ,n