【正文】
H v A A A?? ? ? ?? ? ? ?? ?1j j jm v H v H v?? ??? HOWA( Heavy OWA Operators) (文獻(xiàn) 6) 用于不確定性下的決策問題中。與 OWA不同之處在于放松了對權(quán)重的要求。 ? ? ? ?1211, , ,0 1 , 1nn T j jjnjjjH a a a W B an???????? ? ? ??? OWA算子和模糊積分做為融合算子在融合過程中都要對被融合的值進(jìn)行排序,區(qū)別在于模糊積分中的權(quán)重不是固定的,而是也與自變量的排序有關(guān)的。 二者的權(quán)重都可以由一個 BUM函數(shù)產(chǎn)生。 在融合問題中, OWA及模糊積分的各種推廣形式廣泛應(yīng)用于群決策及不確定性下的決策中。 1 Yager,., “On ordered weighted averaging aggregation operators in multicriteria decision making, ” IEEE Transactions on Systems, Man and Cyberics 18, 183190,1988 2 Yager. “Quantifier guided aggregation using OWA aggregation”. International Journal of Intelligent Systems , 1996 3 Yager and , Operations for Granular Computing: Mixing Words and Numbers, Proceedings of the FUZZIEEE World Congress on Computational Intelligence, Anchorage, 1988,123128 4 Witlold Pedrycz. OWABased puting:learning algorithms. 5 David L. La Red. etc. OWA Aggregation with Soft Majority Operators. 參考文獻(xiàn) 6 Yager. Heavy OWA Operators. Fuzzy optimization and decision making,1, 379397,2023 7 Yager, Generalized OWA Aggregation Operators. Fuzzy optimization and decision making,3, 93107, 2023 8 Learning Weights in the Generalized OWA Operators. Fuzzy optimization and decision making,4, 119130,2023 9 Francisco Chiclana, etc. Some induced oredered weighted averaging operators and their use for solving group decision making problems based on fuzzy preference relations,2023 10 Yager. Choquet aggregation using order inducing variables, 2023 演講完畢,謝謝觀看!