【摘要】第三節(jié)逆矩陣,111????aaaa,11EAAAA????則矩陣稱為的可逆矩陣或逆陣.A1?A一、概念的引入在數(shù)的運(yùn)算中,當(dāng)數(shù)時(shí),0?a有aa11??a其中為的倒數(shù),a(或稱的逆);在矩陣的運(yùn)算中,E
2024-10-06 19:42
【摘要】線線性性代代數(shù)數(shù)?LinearAlgebra第二章行列式1第二章行列式行列式(Determinant)是線性代數(shù)中的一個(gè)最基本、最常用的工具,最早出現(xiàn)于求解線性方程組.它被廣泛地應(yīng)用于數(shù)學(xué)、物理、力學(xué)以及工程技術(shù)等領(lǐng)域.2第二章行
2025-01-20 08:02
【摘要】隨風(fēng)潛入夜?jié)櫸锛?xì)無(wú)聲(續(xù))李尚志中國(guó)科學(xué)技術(shù)大學(xué)2021/11/10數(shù)學(xué)實(shí)驗(yàn):幾何變換(x,y)?(x’,y’)?x’=f1(x,y),y’=f2(x,y)?曲線C:x=x(t),y=y(t)?曲線C’:x=f1(x(t),y(t)),
2024-10-22 01:08
【摘要】化二次型為標(biāo)準(zhǔn)形只含有平方項(xiàng)的二次型nnfkykyky????2221122稱為二次型的標(biāo)準(zhǔn)形(或法式).例如??312322213214542,,xxxxxxxxf????都為二次型;??23222132144,,xxxxxxf???為二次型的標(biāo)準(zhǔn)形.??323121321,,x
2025-01-22 08:22
【摘要】線性代數(shù)?主講:王娟?教材:線性代數(shù)(第三版),何蘇陽(yáng)、呂巍然、王子亭主編,石油大學(xué)出版社?安排:共32學(xué)時(shí),計(jì)劃講授前五章,平時(shí)成績(jī)占20%,期末成績(jī)占80%。一、學(xué)習(xí)必要性二、課程特點(diǎn)1、線性代數(shù)
2025-01-22 10:48
【摘要】分塊矩陣?分塊矩陣的概念?分塊矩陣的運(yùn)算?分塊矩陣求逆?求解矩陣方程,,,.AAAA?設(shè)是矩陣在矩陣的行之間加上一些橫(虛)線、在列之間加上一些豎(虛)線將矩陣形式上分成若干個(gè)小矩陣這些小矩陣稱為的以子塊
2025-01-20 09:37
【摘要】說(shuō)明:本次課件不作為課程內(nèi)容,沒(méi)有作業(yè),僅供參考!第1章矩陣與行列式【矩陣與行列式簡(jiǎn)介】在計(jì)算機(jī)日益發(fā)展的今天,線性代數(shù)起著越來(lái)越重要的作用。線性代數(shù)起源于解線性方程組的問(wèn)題,而利用矩陣來(lái)求解線性方程組的Gauss消元法至今仍是十分有效的計(jì)算機(jī)求解線性方程組的方法。矩陣是數(shù)學(xué)研究和應(yīng)用的一個(gè)重要工具,利用矩陣的
2025-02-25 00:04
【摘要】馮媛難馮媛2,,.mnAkkkmknkAkAk???在矩陣中任取行列(),位于這些行列交叉處的個(gè)元素不改變它們?cè)谥兴幍奈恢么涡蚨玫碾A行列式,稱為矩陣的階子式一、矩陣秩的概念和性質(zhì)
2025-01-22 22:49
【摘要】線性代數(shù)教學(xué)改革李尚志教授中國(guó)科學(xué)技術(shù)大學(xué)數(shù)學(xué)系空間為體,矩陣為用?研究對(duì)象幾何:線性空間(向量)?研究工具代數(shù):矩陣運(yùn)算?向量(問(wèn)題)modeling?矩陣語(yǔ)言描述?矩陣運(yùn)算解決?
2024-08-01 04:22
【摘要】向量組的秩向量組的極大線性無(wú)關(guān)組與秩歐氏空間向量空間的基維數(shù)坐標(biāo)基變換與坐標(biāo)變換北京科技大學(xué)《線性代數(shù)》課程組012:,,,rA???線性無(wú)關(guān)向量組,定義簡(jiǎn)稱為極大無(wú)關(guān)組或最大無(wú)關(guān)組.12,,,r???若向量組A的一個(gè)部分組A0:滿足(1)
2025-02-24 12:43
【摘要】第三章矩陣的初等變換與線性方程組知識(shí)點(diǎn)回顧:克拉默法則結(jié)論1如果線性方程組(1)的系數(shù)行列式不等于零,則該線性方程組一定有解,而且解是唯一的.(P.24定理4)結(jié)論1′如果線性方程組無(wú)解或有兩個(gè)不同的解,則它的系數(shù)行列式必為零.(4')設(shè)11112211211222
2025-01-22 15:17
【摘要】線性代數(shù)??行列式、矩陣、n維向量、線性方程組、標(biāo)準(zhǔn)形與二次型,其中行列式與矩陣是其基本理論基礎(chǔ)。Leibniz在十七世紀(jì)就有了行列式的概念。Vandermonde是第一個(gè)對(duì)行列式理論做出連貫的邏輯闡述的人。Cayley被公認(rèn)為矩陣論的創(chuàng)立者。線性代數(shù)前言?矩陣論在二
2024-08-18 10:51
【摘要】2022~2022學(xué)年第二學(xué)期試卷(B)一、填空題(每小題4分,共20分)1.設(shè)n階方陣的行列式1,3A?則1*13.()15AA?????????n)2(3?nnA?mmB?????????????11100BA2.設(shè)與均可逆,
2025-01-20 07:32
【摘要】一、選擇題1.n階行列式等于[].習(xí)題一(26頁(yè))(A)1;(B)(-1)n-1;(C)0;(D)-1.B0111101111011111
2025-03-25 05:54
【摘要】線性代數(shù)課程的性質(zhì)?線性代數(shù)是數(shù)學(xué)的一個(gè)分支,是數(shù)學(xué)的基礎(chǔ)理論課之一。它既是學(xué)習(xí)數(shù)學(xué)的必修課,也是學(xué)習(xí)其他專業(yè)課的必修課。內(nèi)容與任務(wù)?線性代數(shù)是研究有限維線性空間及其線性變換的基本理論,包括行列式、矩陣及矩陣的初等變換、線性方程組、向量組的線性相關(guān)性、相似矩陣及二次型等內(nèi)容。?
2025-02-24 15:46