【摘要】一、選擇題1.n階行列式等于[].習(xí)題一(26頁)(A)1;(B)(-1)n-1;(C)0;(D)-1.B0111101111011111
2025-03-25 05:54
【摘要】2022~2022學(xué)年第二學(xué)期試卷(B)一、填空題(每小題4分,共20分)1.設(shè)n階方陣的行列式1,3A?則1*13.()15AA?????????n)2(3?nnA?mmB?????????????11100BA2.設(shè)與均可逆,
2025-01-20 07:32
【摘要】線線性性代代數(shù)數(shù)?LinearAlgebra第二章行列式1第二章行列式行列式(Determinant)是線性代數(shù)中的一個(gè)最基本、最常用的工具,最早出現(xiàn)于求解線性方程組.它被廣泛地應(yīng)用于數(shù)學(xué)、物理、力學(xué)以及工程技術(shù)等領(lǐng)域.2第二章行
2025-01-20 08:02
【摘要】1第一章行列式:(1)381141102???;(2)bacacbcba(3)222111cbacba;(4)yxyxxyxyyxyx???.解(1)????381141102
2025-01-12 10:35
【摘要】《線性代數(shù)》習(xí)題答案習(xí)題一一、填空題1、82、1或-23、?????????????????????600012600166203212134、1?5、0??6、2121?
2024-09-08 21:16
【摘要】第一篇:線性代數(shù)習(xí)題答案 習(xí)題三(A類) =(1,1,0),α2=(0,1,1),α3=(3,4,0).求α1-α2及3α1+:α1-α2=(1,1,0)-(0,1,1)=(1,0,-1),3α1...
2024-11-09 22:39
【摘要】第一篇:線性代數(shù)習(xí)題答案 、=2,s=5,t=8或r=5,s=8,t=2或r=8,s=2,t==2,j=;a13a25a32a44a51;;當(dāng)k為偶數(shù)時(shí),排列為偶排列,當(dāng)k為奇數(shù)時(shí),(1)1;(2)...
2024-11-09 12:06
【摘要】第三節(jié)逆矩陣,111????aaaa,11EAAAA????則矩陣稱為的可逆矩陣或逆陣.A1?A一、概念的引入在數(shù)的運(yùn)算中,當(dāng)數(shù)時(shí),0?a有aa11??a其中為的倒數(shù),a(或稱的逆);在矩陣的運(yùn)算中,E
2024-10-06 19:42
【摘要】習(xí)題設(shè)行列式,則第四行各元素余子式之和的值為.2235007022220403???D111100
2025-01-20 13:25
【摘要】化二次型為標(biāo)準(zhǔn)形只含有平方項(xiàng)的二次型nnfkykyky????2221122稱為二次型的標(biāo)準(zhǔn)形(或法式).例如??312322213214542,,xxxxxxxxf????都為二次型;??23222132144,,xxxxxxf???為二次型的標(biāo)準(zhǔn)形.??323121321,,x
2025-01-22 08:22
【摘要】線性代數(shù)?主講:王娟?教材:線性代數(shù)(第三版),何蘇陽、呂巍然、王子亭主編,石油大學(xué)出版社?安排:共32學(xué)時(shí),計(jì)劃講授前五章,平時(shí)成績占20%,期末成績占80%。一、學(xué)習(xí)必要性二、課程特點(diǎn)1、線性代數(shù)
2025-01-22 10:48
【摘要】隨風(fēng)潛入夜?jié)櫸锛?xì)無聲(續(xù))李尚志中國科學(xué)技術(shù)大學(xué)2021/11/10數(shù)學(xué)實(shí)驗(yàn):幾何變換(x,y)?(x’,y’)?x’=f1(x,y),y’=f2(x,y)?曲線C:x=x(t),y=y(t)?曲線C’:x=f1(x(t),y(t)),
2024-10-22 01:08
【摘要】分塊矩陣?分塊矩陣的概念?分塊矩陣的運(yùn)算?分塊矩陣求逆?求解矩陣方程,,,.AAAA?設(shè)是矩陣在矩陣的行之間加上一些橫(虛)線、在列之間加上一些豎(虛)線將矩陣形式上分成若干個(gè)小矩陣這些小矩陣稱為的以子塊
2025-01-20 09:37
【摘要】說明:本次課件不作為課程內(nèi)容,沒有作業(yè),僅供參考!第1章矩陣與行列式【矩陣與行列式簡介】在計(jì)算機(jī)日益發(fā)展的今天,線性代數(shù)起著越來越重要的作用。線性代數(shù)起源于解線性方程組的問題,而利用矩陣來求解線性方程組的Gauss消元法至今仍是十分有效的計(jì)算機(jī)求解線性方程組的方法。矩陣是數(shù)學(xué)研究和應(yīng)用的一個(gè)重要工具,利用矩陣的
2025-02-25 00:04
【摘要】馮媛難馮媛2,,.mnAkkkmknkAkAk???在矩陣中任取行列(),位于這些行列交叉處的個(gè)元素不改變它們在中所處的位置次序而得的階行列式,稱為矩陣的階子式一、矩陣秩的概念和性質(zhì)
2025-01-22 22:49