【摘要】第七節(jié)克萊姆法則???????????????????nnnnnnnnnnbxaxaxabxaxaxabxaxaxa???????????????22112222212111212111設(shè)線性方程組,,,,21不全為零若常數(shù)項(xiàng)nbbb?則稱此方程組為非齊次線性方程
2024-10-06 19:42
【摘要】學(xué)習(xí)要求理解Cramer法則,會(huì)用Cramer法則解方程組;理解矩陣的概念,了解單位矩陣、對(duì)角矩陣三角矩陣的定義及性質(zhì),了解對(duì)稱矩陣、反對(duì)稱矩陣的定義及性質(zhì);掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置及其運(yùn)算率,了解方陣的冪與方陣乘積的行列式的性質(zhì)。如果線性方程組11112211211222221
2025-05-15 20:44
【摘要】克萊姆法則的應(yīng)用郭杰20132113417假若有n個(gè)未知數(shù),n個(gè)方程組成的方程組或者寫成矩陣形式為Ax=b,其中A為n*n方陣,x為n個(gè)變量構(gòu)成列向量,b為n個(gè)常數(shù)項(xiàng)構(gòu)成列向量。而當(dāng)它的系數(shù)矩陣可逆,或者說對(duì)應(yīng)的行列式|A|不等于0的時(shí)候,它有唯一解xi=|Ai|/|A|,其中Ai〔i=1,2,……,n〕是矩陣A中第i列的a1i,a2i,……ani(即第i列)依
2025-06-28 06:11
【摘要】§一.行列式的定義1.二階行列式與三階行列式2.n階行列式二.行列式的性質(zhì)三.行列式按行(列)展開定理及其推論四.方陣乘積的行列式五.克萊姆法則用消元法解二元線性方程組???????.,22221211212111bxaxabxaxa??1??2
2025-05-10 00:52
【摘要】2022/2/16第一章行列式1上課手機(jī)關(guān)了嗎?2022/2/16第一章行列式2復(fù)習(xí):行列式按某行(列)展開定理及推論按第行展開iD????1(1,2,,)nijijjaAin????按第列展開j????1(1,2
2025-01-22 18:21
【摘要】畢業(yè)論文題目:克萊姆法則的推廣及其應(yīng)用院(部)名稱:信息與計(jì)算科學(xué)學(xué)院專業(yè):應(yīng)數(shù)畢業(yè)論文摘要行列式的概念是線性代數(shù)中的基本概念之一,行列式的計(jì)算式是線
2024-09-06 19:54
【摘要】第四節(jié)克萊姆法則n()det,,1,ijnnijijAAArsrsnaa????若階矩陣的元素在中的代數(shù)余子式為,則對(duì)任意引理有:1det()0
2025-07-27 00:42
【摘要】線性代數(shù)課件第四節(jié)方陣的特征值與特征向量線性代數(shù)課件聊城大學(xué)線性代數(shù)課件主要內(nèi)容特征值,特征向量定義及其性質(zhì)一對(duì)角化的條件二小結(jié)三線性代數(shù)課件一特征值,特征向量定義及性質(zhì)線性代數(shù)課件一.特征值,特征向量定義及其性質(zhì)
2024-10-19 21:32
【摘要】線線性性代代數(shù)數(shù)?LinearAlgebra第二章行列式1第二章行列式行列式(Determinant)是線性代數(shù)中的一個(gè)最基本、最常用的工具,最早出現(xiàn)于求解線性方程組.它被廣泛地應(yīng)用于數(shù)學(xué)、物理、力學(xué)以及工程技術(shù)等領(lǐng)域.2第二章行
2025-01-20 08:02
【摘要】第三節(jié)逆矩陣,111????aaaa,11EAAAA????則矩陣稱為的可逆矩陣或逆陣.A1?A一、概念的引入在數(shù)的運(yùn)算中,當(dāng)數(shù)時(shí),0?a有aa11??a其中為的倒數(shù),a(或稱的逆);在矩陣的運(yùn)算中,E
【摘要】第二章矩陣及其運(yùn)算?矩陣的概念?矩陣的運(yùn)算?逆矩陣?矩陣分塊法第一節(jié)線性方程組和矩陣?矩陣概念的引入(線性方程組)?矩陣的定義?小結(jié)、思考題???????????????????nnnnnnnnnnbxaxaxabxaxaxabxaxaxa
2025-08-08 10:13
【摘要】線性代數(shù)復(fù)習(xí).課程重點(diǎn):解線性方程組★(1)行列式(2)矩陣(3)矩陣初等變換與矩陣的秩(4)向量(5)方陣的相似對(duì)角化(6)二次型nn???解個(gè)方程個(gè)未知量的線性方程組mn???解個(gè)方程個(gè)未知量的線性方程組解線性方程組判斷線性方程
2025-02-22 06:24
【摘要】.,數(shù)是唯一確定的梯形矩陣中非零行的行梯形,行階把它變?yōu)樾须A變換總可經(jīng)過有限次初等行任何矩陣nmA?.,,12階子式的稱為矩陣階行列式,的中所處的位置次序而得變它們在不改元素處的個(gè)),位于這些行列交叉列(行中任取矩陣在定義kAkAknkmkkkAnm???一、矩陣秩的概念矩陣的秩
2024-10-07 01:05
【摘要】第二章矩陣及其運(yùn)算§1矩陣???????????????mn2m1mn22221n11211aaaaaaaaaA???????),(ija也可以記成行矩陣(行向量),列矩陣(列向量),n階矩陣(n階方陣)
2024-10-22 01:08
【摘要】線性代數(shù)湖南工業(yè)大學(xué)理學(xué)院主講教師:段向陽月年92022第一章第二章第三章第四章第五章第六章第七章答案教學(xué)安排?課程學(xué)時(shí):40學(xué)時(shí)?課程性質(zhì):基礎(chǔ)理論課?考