【摘要】2020年9月15日給定二次函數(shù):y=2x2-8x+1,我們怎么求它的最值。Oxy2-7解:y=2(x-2)2-7,由圖象知,當(dāng)x=2時,y有最小值,ymin=f(2)=-7,沒有最大值。小結(jié)、二次函數(shù)y=ax2+bx+c(a≠0)中,y取得最小值當(dāng)自變量x=
2024-11-15 21:11
【摘要】二次函數(shù)的最值問題重點(diǎn)掌握閉區(qū)間上的二函數(shù)的最值問題難點(diǎn)了解并會處理含參數(shù)的二次函數(shù)的最值問題核心區(qū)間與對稱軸的相對位置思想數(shù)形結(jié)合分類討論復(fù)習(xí)引入頂點(diǎn)式:y=a(x-m)2+n(a0)兩根式:y=a(x-x1)(x-x2)(a0)
【摘要】二次函數(shù)的最值二次函數(shù)的最值問題重點(diǎn)掌握閉區(qū)間上的二函數(shù)的最值問題難點(diǎn)了解并會處理含參數(shù)的二次函數(shù)的最值問題核心區(qū)間與對稱軸的相對位置思想數(shù)形結(jié)合分類討論復(fù)習(xí)引入頂點(diǎn)式:y=a(x-m)2+n(a0)兩根式:y
2024-11-14 00:49
【摘要】基礎(chǔ)過關(guān)第1課二次函數(shù)在閉區(qū)間上的最值一元二次函數(shù)的區(qū)間最值問題,核心是函數(shù)對稱軸與給定區(qū)間的相對位置關(guān)系的討論。一般分為:對稱軸在區(qū)間的左邊,中間,右邊三種情況.設(shè),求在上的最大值與最小值。分析:將配方,得頂點(diǎn)為、對稱軸為當(dāng)時,它的圖象是開口向上的拋物線,數(shù)形結(jié)合可得在[m,n]上的最值:(1)當(dāng)時,的最小值是,的最大值是中的較大者。(2)當(dāng)時
2025-04-07 04:58
【摘要】用待定系數(shù)法求二次函數(shù)的解析式y(tǒng)xo課前復(fù)習(xí)例題選講課堂小結(jié)課堂練習(xí)課件制作:宋榮禮課前復(fù)習(xí)二次函數(shù)解析式有哪幾種表達(dá)式??一般式:y=ax2+bx+c?頂點(diǎn)式:y=a(x-h)2+k?兩根式:y=a(x-x1)(x
2024-11-14 08:38
【摘要】?1.判斷正誤:?(1)若函數(shù)f(x)在區(qū)間(a,b)和(c,d)上均為增函數(shù),則函數(shù)f(x)在區(qū)間(a,b)∪(c,d)上也是增函數(shù).?(2)若函數(shù)f(x)和g(x)在各自的定義域上均為增函數(shù),則f(x)+g(x)在它們定義域的交集(非空)上是增函數(shù).?[答案](1)×(
2024-11-14 12:26
【摘要】廣東省深圳市第三高級中學(xué)數(shù)學(xué)必修一《函數(shù)的最大(?。┲怠氛n件一、問題導(dǎo)入的,在減區(qū)間上時隨著自變量的增大而降低的,那么函數(shù)的圖象有最高點(diǎn)和最低點(diǎn)嗎?2.函數(shù)圖象上升與下降反映了函數(shù)的單調(diào)性,如果函數(shù)的圖象存在最高點(diǎn)或最低點(diǎn),它又反映了函數(shù)的什么性質(zhì)?二、探索新知——最大值觀察下列兩個函數(shù)圖象:思考1:這兩
2024-11-17 12:03
【摘要】二次函數(shù)的最值問題練習(xí):已知函數(shù)y=x2+2x+2,xD,求此函數(shù)在下列各D中的最值:①[-3,-2];②[-2,1];③[0,1];④[-3,]顯示文本對象顯示點(diǎn)隱藏函數(shù)圖像顯示對象顯示文本對象顯示對象顯示點(diǎn)練習(xí):已知函數(shù)y=x2+2x+2,xD,求此
2024-11-16 01:26
【摘要】句容市天王中學(xué)張映明y=(a、b、C是常數(shù),且)的函數(shù)叫做y關(guān)于x的二次函數(shù)。ax2+bx+ca≠0y=ax&
2024-11-16 00:08
【摘要】求二次函數(shù)的最值【例1】當(dāng)時,求函數(shù)的最大值和最小值.分析:作出函數(shù)在所給范圍的及其對稱軸的草圖,觀察圖象的最高點(diǎn)和最低點(diǎn),由此得到函數(shù)的最大值、最小值及函數(shù)取到最值時相應(yīng)自變量的值.解:作出函數(shù)的圖象.當(dāng)時,,當(dāng)時,.【例2】當(dāng)時,求函數(shù)的最大值和最小值.解:作出函數(shù)的圖象.當(dāng)時,,當(dāng)時,.由上述兩例可以看到,二次函數(shù)在自變量的給定范圍內(nèi),
2025-06-23 01:33
【摘要】二次函數(shù)的最值上節(jié)課,我們大膽假設(shè)存在一個新數(shù)i(叫做虛數(shù)單位).規(guī)定:①21i??;②i可以和實(shí)數(shù)進(jìn)行運(yùn)算,且原有的運(yùn)算律仍成立.1.復(fù)數(shù)(,)zabiabR???a─實(shí)部
2024-09-05 13:16
【摘要】???xyo(1)配方。(2)畫圖象。(3)根據(jù)圖象確定函數(shù)最值。(看所給范圍內(nèi)的最高點(diǎn)和最低點(diǎn))122(a0)xxxyaxbxc??????求給定范圍內(nèi),二次函數(shù)最值的步驟:??2324yx???試判斷函數(shù)
2024-11-25 23:43
【摘要】一次函數(shù)和二次函數(shù)沈陽二中數(shù)學(xué)組一次函數(shù)的性質(zhì)與圖象?自學(xué)提綱1一次函數(shù)的解析式是什么?其中k和b分別代表什么?2一次函數(shù)的奇偶性和圖象的單調(diào)性結(jié)合圖象總結(jié)一次函數(shù)的性質(zhì):1一次函數(shù)的圖象是一條直線,其中k叫直線的斜率,b叫該直線在軸上的截距.斜率k=△y/△x
2024-11-13 09:24
【摘要】二次函數(shù)在給定區(qū)間上的最值問題【學(xué)前思考】二次函數(shù)在閉區(qū)間上取得最值時的,只能是其圖像的頂點(diǎn)的橫坐標(biāo)或給定區(qū)間的端點(diǎn).因此,影響二次函數(shù)在閉區(qū)間上的最值主要有三個因素:拋物線的開口方向、對稱軸以及給定區(qū)間的位置.在這三大因素中,最容易確定的是拋物線的開口方向(與二次項(xiàng)系數(shù)的正負(fù)有關(guān)),而關(guān)于對稱軸與給定區(qū)間的位置關(guān)系的討論是解決二次函數(shù)在給定區(qū)間上的最值問題的關(guān)鍵.
2025-04-07 04:24
【摘要】求下列函數(shù)的值域:③y=(x≥2)①y=②y=x2+4x+3(-3≤x≤1)1.求函數(shù)y=的值域.2.求函數(shù)y=的值域.4.求函數(shù)y=的值域.
2024-11-14 00:48