【摘要】第四章多自由度系統(tǒng)的振動(dòng)響應(yīng)分析多自由度系統(tǒng)的自由振動(dòng)響應(yīng)多自由度系統(tǒng)的自由振動(dòng)計(jì)算?1、建立運(yùn)動(dòng)微分方程?2、計(jì)算主模態(tài)以及固有頻率?3、計(jì)算初始條件下的自由振動(dòng)。????)0(),...0(),0(
2024-08-15 17:07
【摘要】機(jī)械振動(dòng)(MechanicalVibration)交通與車輛工程學(xué)院剛憲約2022年11月8日第四課單自由度系統(tǒng):阻尼自由振動(dòng)前課需要掌握的內(nèi)容?運(yùn)動(dòng)方程的建模方法?牛頓第二定律?機(jī)械能守恒dE=0?虛功原理?運(yùn)動(dòng)方程的解?求解方法?解的形式:幅值與相位?
2025-02-24 10:20
【摘要】第二章單自由度系統(tǒng)無阻尼自由振動(dòng)第二章單自由度系統(tǒng)第二章單自由度系統(tǒng)無阻尼自由振動(dòng)前課回顧?機(jī)械振動(dòng)系統(tǒng)的基本元件及其特性??簡(jiǎn)諧振動(dòng)的特點(diǎn)?第二章單自由度系統(tǒng)無阻尼自由振動(dòng)主要內(nèi)容1.引言2.運(yùn)動(dòng)微分方程3.固有頻率的計(jì)算方法4.等效質(zhì)量與等效剛度
2025-01-23 07:15
【摘要】機(jī)械振動(dòng)(MechanicalVibration)交通與車輛工程學(xué)院剛憲約第七課多自由度系統(tǒng)的運(yùn)動(dòng)方程2022年1月4日單自由度系統(tǒng)回顧?單自由度系統(tǒng)運(yùn)動(dòng)方程的建模?牛頓第二定律(向量方法),達(dá)朗伯原理?能量方法d(U+T)=0?虛位移原理(虛功原理)?單自由度系統(tǒng)固有頻率計(jì)算方法?根
2024-12-11 10:03
【摘要】單自由度機(jī)械振動(dòng)系統(tǒng)諧和力激勵(lì)的受迫振動(dòng)單自由度機(jī)械系統(tǒng)的振動(dòng)單自由度機(jī)械系統(tǒng)的振動(dòng)內(nèi)容提要u一、強(qiáng)迫振動(dòng)方程及其解1、無阻尼系統(tǒng)的強(qiáng)迫振動(dòng)2、有阻尼系統(tǒng)的強(qiáng)迫振動(dòng)u二、強(qiáng)迫振動(dòng)的過渡過程u三、強(qiáng)迫振動(dòng)的穩(wěn)態(tài)振動(dòng)1、機(jī)械阻抗2、頻率特性3、激勵(lì)力對(duì)振動(dòng)系統(tǒng)的輸入功率一、強(qiáng)迫振動(dòng)方程及其解一個(gè)
2024-12-31 11:17
【摘要】1工程中的結(jié)構(gòu)有些可簡(jiǎn)化為單自由度體系分析單層工業(yè)廠房水塔有些不能作為單自由度體系分析,需簡(jiǎn)化為多自由度體系進(jìn)行分析多層房屋、高層建筑不等高廠房排架和塊式基礎(chǔ)§10-5多自由度體系的自由振動(dòng)2按建立運(yùn)動(dòng)方程的方法,多自由度體系自由振動(dòng)的求解方法有兩種:剛度法和柔度法。剛度法通過建立力的平衡方
2025-01-17 13:43
【摘要】多自由度系統(tǒng)的受迫振動(dòng)?系統(tǒng)對(duì)簡(jiǎn)諧力激勵(lì)的響應(yīng)?動(dòng)力吸振器?模態(tài)疊加法?系統(tǒng)對(duì)任意激勵(lì)力的響應(yīng)系統(tǒng)對(duì)簡(jiǎn)諧力激勵(lì)的響應(yīng)回顧:?jiǎn)巫杂啥认到y(tǒng)的受迫振動(dòng)tieFkxxcxm?0??????為復(fù)數(shù)變量,分別與和相對(duì)應(yīng)tF?cos0tF?sin0x設(shè):tiexx??
2025-06-24 08:23
【摘要】第1章單自由度系統(tǒng)的自由振動(dòng)主講賈啟芬機(jī)械與結(jié)構(gòu)振動(dòng)MechanicalandStructuralVibration引言振動(dòng)是一種運(yùn)動(dòng)形態(tài),是指物體在平衡位置附近作往復(fù)運(yùn)動(dòng)。振動(dòng)屬于動(dòng)力學(xué)第二類問題-已知主動(dòng)力求運(yùn)動(dòng)。Mechanical
2025-06-17 23:40
【摘要】多自由度系統(tǒng)的受迫振動(dòng)?系統(tǒng)對(duì)簡(jiǎn)諧力激勵(lì)的響應(yīng)?動(dòng)力吸振器?模態(tài)疊加法?系統(tǒng)對(duì)任意激勵(lì)力的響應(yīng)系統(tǒng)對(duì)簡(jiǎn)諧力激勵(lì)的響應(yīng)回顧:?jiǎn)巫杂啥认到y(tǒng)的受迫振動(dòng)tieFkxxcxm?0??????為復(fù)數(shù)變量,分別與和相對(duì)應(yīng)tF?cos0tF?sin0x設(shè):tiexx?
2025-05-19 05:23
【摘要】多自由度系統(tǒng)振動(dòng)第四章32022年5月31日《振動(dòng)力學(xué)》2教學(xué)內(nèi)容?多自由度系統(tǒng)的動(dòng)力學(xué)方程?多自由度系統(tǒng)的自由振動(dòng)?頻率方程的零根和重根情形?多自由度系統(tǒng)的受迫振動(dòng)?有阻尼的多自由度系統(tǒng)多自由度系統(tǒng)振動(dòng)2022年5月31日《振動(dòng)力學(xué)》3小結(jié):作用力方程、位移方程
2025-05-06 22:04
【摘要】機(jī)械振動(dòng)(MechanicalVibration)交通與車輛工程學(xué)院剛憲約第九課多自由度系統(tǒng)的振動(dòng)響應(yīng)2022年3月13日前課回顧?模態(tài)正交性的含義??[U]T[M][U]=[∧]?[U]T[K][U]=[∧]?展開定理??振動(dòng)系統(tǒng)的響應(yīng)是n個(gè)振型的線性組合主要內(nèi)容?1.概
2025-02-19 04:38
【摘要】機(jī)械振動(dòng)(MechanicalVibration)交通與車輛工程學(xué)院剛憲約第五課單自由度系統(tǒng):周期強(qiáng)迫振動(dòng)與非周期強(qiáng)迫振動(dòng)*主要內(nèi)容§周期強(qiáng)迫振動(dòng)與Fourier級(jí)數(shù)§單位脈沖函數(shù)與單位脈沖響應(yīng)§非周期強(qiáng)迫振動(dòng)與卷積積分§脈沖響應(yīng)函數(shù)、頻響函數(shù)與傳遞函數(shù)周期強(qiáng)迫振動(dòng)周期強(qiáng)迫振動(dòng)周期
2025-02-24 14:32
2024-12-31 11:46
【摘要】第三章二自由度系統(tǒng)振動(dòng)董明明振動(dòng)與噪聲控制實(shí)驗(yàn)室(2)無阻尼自由振動(dòng)?要使方程解耦,就是要尋找合適的描述系統(tǒng)振動(dòng)的廣義坐標(biāo)系,使得系統(tǒng)的阻尼和剛度矩陣在這個(gè)廣義坐標(biāo)下為對(duì)角矩陣,這等價(jià)于尋找一個(gè)變換矩陣[u],使得剛度和阻尼矩陣都對(duì)角化。無阻尼振動(dòng)的微分方程1112111121212
2025-05-18 02:24
【摘要】飛行器結(jié)構(gòu)動(dòng)力學(xué)第2章單自由度系統(tǒng)的振動(dòng)第2章單自由度系統(tǒng)的振動(dòng)單自由度系統(tǒng)的自由振動(dòng)單自由度系統(tǒng)的強(qiáng)迫振動(dòng)單自由度系統(tǒng)的工程應(yīng)用第2章單自由度系統(tǒng)的振動(dòng)單自由度系統(tǒng)的自由振動(dòng)單自由度系統(tǒng)的自由振動(dòng)正如第一章所述,振動(dòng)系統(tǒng)可分為離散模型和連續(xù)模
2025-05-02 04:11