【摘要】長寧中學(xué)李昌源求二面角的平面角一、教學(xué)目標(biāo)1.理解和掌握二面角的有關(guān)概念;掌握二面角的平面角的常見求法.2.用轉(zhuǎn)化的思維方法將二面角問題轉(zhuǎn)化為其平面角問題,進(jìn)一步培養(yǎng)學(xué)生的空間想象能力和分析、解決問題的能力.二、教學(xué)重點、難點1.教學(xué)重點:二面角的平面角的常見求法.2.教學(xué)難點:如何選取恰當(dāng)?shù)奈恢煤头椒ㄗ鞒龆娼堑?/span>
2024-11-13 06:01
【摘要】二面角從空間一直線出發(fā)的兩個半一、二面角的定義二、二面角的平面角角的平面角一個平面垂直于二面角的棱,并與兩半平面分別相交于射線PA、PB垂足為P,則∠APB叫做二面ABPγβαιαβι平面所組成的圖形叫做二面角
2024-11-10 15:15
【摘要】二面角(2)一、復(fù)習(xí)鞏固1.二面角的定義?2.什么是二面角的平面角?請看3.什么是直二面角?二、研究與討論1.二面角的平面角的頂點是二面角棱上的_____一點.2.二面角的平面角的兩邊分別在二面角的_______內(nèi).3.二面角的平面角的
2024-11-10 17:19
【摘要】1、二面角及二面角的平面角的有關(guān)定義平面的一條直線把平面分為兩部分,其中的每一部分都叫做一個半平面。從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。(1)半平面(2)二面角lαlα這條直線叫做二面角的棱,每個半平面叫做二面角的面。αβBOAa
2024-11-13 23:31
【摘要】高中立體幾何中二面角的平面角的作法一、二面角的平面角的定義如圖(1),α、β是由l出發(fā)的兩個平面,O是l上任意一點OC∈α,且OC⊥l;CD∈β,且OD⊥l。這就是二面角的平面角的環(huán)境背景,即∠COD是二面角α—l—β的平面角,從中不難得到下列特征: ?、?、過棱上任意一點,其平面角是唯一的;Ⅱ、其平面角所在平面與其兩個半平面均垂直;另外,如果在O
2025-06-10 23:17
【摘要】βabABCD設(shè)異面直線a、b的夾角為θcosθ=??AB,CDcos||=AB·CD·AB||CD||θ=??AB,CD或θ=π-?
2025-05-18 22:58
【摘要】3種求二面角的幾何法二面角的度量問題是立幾中學(xué)生比較困難的一個問題,課本上是通過它的平面角來進(jìn)行度量的,關(guān)鍵在于充分利用平面角的定義。下面來介紹求二面角的大小的幾種方法:直二面角情況:一般是通過幾何求證的方法,主要依據(jù)是直線與平面垂直的判定定理。例1.如圖ABCD是矩形,AB=a,BC=b(ab),沿對角線AC把△ADC折起,使A
2025-06-23 01:46
【摘要】平面法向量在立體幾何中的應(yīng)用——利用法向量求二面角(一)平面的法向量的定義:n如果n??,那么向量n叫做平面?的法向量?1、利用平面法向量求直線與平面所成的角:直線與平面所成的角等于平面的法向量所在的直線與已知直線的夾角的余角。(二
2024-11-28 14:09
【摘要】用向量法求二面角例1:在三棱柱ABO—A1B1O1中,平面OBB1O1⊥平面OAB,∠O1OB=600,∠BOA=900,OB=OO1=2,AO=.求3(1)二面角O—AB—O1的大小AOBA1O1B1xyz42arccos例2:已知四棱錐P—ABC
2024-11-13 08:07
【摘要】利用線面角和二面角本質(zhì)解題沈勤龍某天聽了一節(jié)高三某老師的試卷講評課,很有收獲。覺得應(yīng)該寫出來與各位分享,并希望各位不斷提醒自己,在學(xué)習(xí)數(shù)學(xué)的過程中,應(yīng)不斷思考,不斷追求本質(zhì)。首先,我們要認(rèn)識線面角和二面角的兩個本質(zhì)(不作展開,自行理解或證明):本質(zhì)1:一條斜線與已知平面中的任一條直線所成的角中,線面角最小。本質(zhì)2:對于一個銳二面角,在其中一個半平面中的任一條直線與另一個半平面
2025-03-27 12:45
【摘要】第九章直線、平面、簡單幾何體懷化鐵路第一中學(xué)二面角(4)——二面角習(xí)題課第九章直線、平面、簡單幾何體懷化鐵路第一中學(xué)一、朝花夕拾二、兩個平面垂直的判定定理三、兩個平面垂直的性質(zhì)定理一、兩個平面垂直的定義相交成直二面角的兩個平面,叫做互相垂直的平面CDB
2024-11-10 15:28
【摘要】1.如圖,四棱錐中,底面為矩形,底面,,點M在側(cè)棱上,=60°(I)證明:M在側(cè)棱的中點(II)求二面角的大小。2.如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,,E,F(xiàn)分別是BC,PC的中點.(Ⅰ)證明:AE⊥PD;(Ⅱ)若H為PD上的動點,EH與平面PAD所成最大角的正切值為,求二面角E—AF—C的余弦值.E
2025-03-28 06:42
【摘要】二面角仔細(xì)觀察慎重思考認(rèn)真解答開拓創(chuàng)新注意積累勇于探索知識再現(xiàn)什么是二面角?由兩個半平面圍成的幾何圖形ιβα敘述二面角平面角的形成過程ιPBAβα在平面α和平面β的交線ι上任取一點P在平面α內(nèi)
2024-11-06 16:40
【摘要】直線與平面所成的角與二面角(二)-——二面角與平面和平面的垂直關(guān)系1二面角及二面角的平面角平面的一條直線把平面分為兩部分,其中的每一部分都叫做一個半平面。從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。(1)半平面——(2)二面角——llαl
2024-08-15 10:03