【摘要】垂徑定理1.如圖1,⊙O的直徑為10,圓心O到弦AB的距離OM的長為3,那么弦AB的長是()A.4B.6C.7D.82.如圖,⊙O的半徑為5,弦AB的長為8,M是弦AB上的一個(gè)動(dòng)點(diǎn),則線段OM長的最小值為( )A.2B.3C.4D.53.過⊙O內(nèi)一點(diǎn)M的最長弦為10
2025-06-27 05:13
【摘要】九年級(jí)下冊(cè)垂徑定理專題練習(xí)一.選擇題:1.下列命題中錯(cuò)誤的有()①弦的垂直平分線經(jīng)過圓心;②平分弦的直徑垂直于弦;③梯形的對(duì)角線互相平分;④圓的對(duì)稱軸是直徑。A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)2.下面四個(gè)命題中正確的一個(gè)是()A.平分一條直徑的弦必垂直于這條直徑B.平分一條弧的直線
2025-03-28 00:08
【摘要】圓的垂徑定理習(xí)題?1.如圖1,⊙O的直徑為10,圓心O到弦AB的距離OM的長為3,那么弦AB的長是(????)?A.4???????B.6????????C.7
2025-06-25 15:49
【摘要】培優(yōu)輔導(dǎo),陪你更優(yōu)秀!垂徑定理練習(xí)題典型例題分析:例題、垂徑定理1、在直徑為52cm的圓柱形油槽內(nèi)裝入一些油后,截面如圖所示,如果油的最大深度為16cm,那么油面寬度AB是________cm.2、在直徑為52cm的圓柱形油槽內(nèi)裝入一些油后,,如果油面寬度是48cm,那么油的最大深度為________cm.3、如圖,已知在⊙中,弦,且
【摘要】1、如圖,在⊙O中,CD是直徑,AB是弦,且CD⊥AB,已知CD=20,CM=4,求AB。2、如圖,AB、CD都是⊙O的弦,且AB∥CD,求證:AC=BD。3、如圖4,在⊙O中,AB為⊙O的弦,C、D是直線AB上兩
2024-12-04 21:07
【摘要】【基礎(chǔ)知識(shí)回顧】一、圓的定義及性質(zhì):1、圓的定義:⑴形成性定義:在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)形成的圖形叫做圓,固定的端點(diǎn)叫線段OA叫做⑵描述性定義:圓是到定點(diǎn)的距離等于的點(diǎn)的集合【名師提醒:1、在一個(gè)圓中,圓心決定圓的半徑?jīng)Q定圓的2、直徑是圓中
【摘要】......2017年01月07日?qǐng)A心角,垂徑定理 一.選擇題(共50小題)1.如圖,⊙O的直徑BD=4,∠A=60°,則BC的長度為( ?。〢. B.2 C.2 D.42.如圖,已知AB
2025-06-22 02:15
【摘要】垂徑定理第1課時(shí)垂徑定理1.(4分)如圖,在⊙O中,OC⊥弦AB于點(diǎn)C,AB=4,OC=1,則OB的長是()A.3B.5C.15D.17B2.(4分)如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,
2025-07-21 18:26
【摘要】圓的垂徑定理1、(2021年濰坊市)如圖,⊙O的直徑AB=12,CD是⊙O的弦,CD⊥AB,垂足為P,且BP:AP=1:5,則CD的長為().A.24B.28C.5D.54答案:D.考點(diǎn):垂徑定理與勾股定理.點(diǎn)評(píng):連接圓的半徑,構(gòu)造直
2024-12-02 16:57
【摘要】實(shí)踐探究把一個(gè)圓沿著它的任意一條直徑對(duì)折,重復(fù)幾次,你發(fā)現(xiàn)了什么?由此你能得到什么結(jié)論?圓是軸對(duì)稱圖形,判斷:任意一條直徑都是圓的對(duì)稱軸()X任何一條直徑所在的直線都是對(duì)稱軸。觀察并回答(1)兩條直徑AB、CD,CD平分AB嗎?(2)若把直徑AB向下平移,變成非直徑的弦,弦AB是否一
2025-07-29 05:18
【摘要】問題:你知道趙州橋嗎?它是1300多年前我國隋代建造的石拱橋,是我國古代人民勤勞與智慧的結(jié)晶.它的主橋是圓弧形,它的跨度(弧所對(duì)的弦的長)為,拱高(弧的中點(diǎn)到弦的距離)為,你能求出趙洲橋主橋拱的半徑嗎?趙州橋主橋拱的半徑是多少?實(shí)踐探究把一個(gè)圓沿著它的任意一條直徑對(duì)折,重復(fù)幾次,你發(fā)現(xiàn)了什么?由此你能得到
2025-08-04 16:34
【摘要】課題垂徑定理惠陽區(qū)第四中學(xué)教材分析?教材的地位和作用:本節(jié)課要研究的是圓的軸對(duì)稱性與垂徑定理及簡(jiǎn)單應(yīng)用,垂徑定理既是前面圓的性質(zhì)的重要體現(xiàn),是圓的軸對(duì)稱性的具體化,也是今后證明線段相等、角相等、弧相等、垂直關(guān)系的重要依據(jù),同時(shí)也是為進(jìn)行圓的計(jì)算和作圖提供了方法和依據(jù),所以它在教材中處于非常重要的位置。學(xué)情分析?
2024-10-21 10:32
【摘要】一、選擇題1、在Rt△ABC中,∠C=90°,三邊長分別為a、b、c,則下列結(jié)論中恒成立的是() A、2abc2 D、2ab≤c22、已知x、y為正數(shù),且│x2-4│+(y2-3)2=0,如果以x、y的長為直角邊作一個(gè)直角三角形,那么以這個(gè)直角三角形的斜邊為邊長的正方形的面積為() A、5 B、25
2025-06-26 05:28
【摘要】1、我們所學(xué)的圓是不是軸對(duì)稱圖形呢?.2、我們所學(xué)的圓是不是中心對(duì)稱圖形呢?3、填空:(1)根據(jù)圓的定義,“圓”指的是“”,是線,而不是“圓面”。(2)圓心和半徑是確定一個(gè)圓的兩個(gè)必需條件,圓心決定圓的,半徑?jīng)Q定圓的,二者缺一不可。(3)同一個(gè)圓的半徑
2025-08-07 23:38
【摘要】O.CAEBD垂徑定理觀察并回答(1)兩條直徑AB、CD,CD平分AB嗎?(2)若把直徑AB向下平移,變成非直徑的弦,弦AB是否一定被直徑CD平分?ADOCBADOCB思考:當(dāng)非直徑的弦AB與直徑CD有什么位置關(guān)系時(shí),弦AB有可能被直徑CD平分?·
2025-08-08 04:35