【摘要】專業(yè)資料分享相似三角形中的輔助線在添加輔助線時,所添加的輔助線往往能夠構造出一組或多組相似三角形,或得到成比例的線段或得出等角,等邊,從而為證明三角形相似或進行相關的計算找到等量關系。主要的輔助線有以下幾種:一、作平行線例1.如圖,的AB邊和AC邊上各取一點D和E,且使AD=
2025-05-19 12:02
【摘要】專業(yè)資料分享金蘋果教育個性化教案:對應角相等,對應邊成比例的三角形,叫做相似三角形。:用符號“∽”表示,讀作“相似于”。:相似三角形的對應邊的比叫做相似比。:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所截成的三角形與原三角形相似。:(1)三
2025-05-19 06:57
【摘要】相似三角形中幾種常見的輔助線作法在添加輔助線時,所添加的輔助線往往能夠構造出一組或多組相似三角形,或得到成比例的線段或出等角,等邊,從而為證明三角形相似或進行相關的計算找到等量關系。主要的輔助線有以下幾種:一、添加平行線構造“A”“X”型例1:如圖,D是△ABC的BC邊上的點,BD:DC=2:1,E是AD的中點,求:BE:EF的值.解法一:過點D作CA的平行線交BF于點
2025-06-28 03:22
【摘要】全等三角形中輔助線的添加:全等三角形的常見輔助線的添加方法、基本圖形的性質的掌握及熟練應用。二.知識要點:1、添加輔助線的方法和語言表述(1)作線段:連接……;(2)作平行線:過點……作……∥……;(3)作垂線(作高):過點……作……⊥……,垂足為……;(4)作中線:取……中點……,連接……;(5)延長并截取線段:延長……使……等于……;(6)截取等長線段
2025-06-22 22:20
【摘要】幾何證明中常見的“添輔助線”方法一.連結一.連結典例1:如圖,AB=AD,BC=DC,求證:∠B=∠D.ACBDAC構造全等三角形BD構造兩個等腰三角形一.連結典例2:如圖,AB=AE,BC=ED
2025-07-29 19:16
【摘要】......全等三角形中做輔助線技巧要點大匯總口訣:三角形圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連
2025-06-28 04:30
【摘要】新思維心教育初二幾何常見輔助線口訣三角形圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。線
2025-06-25 16:36
【摘要】八年級數(shù)學上冊輔助線專題教學目標:掌握各種類型的全等三角形的證明方法教學重點:構造全等三角形ZoQ0KC;tE^B101`教學難點:如何巧妙作輔助線知識點:(1)截長補短型(二)中點線段倍長問題(三)蝴蝶形圖案解決定值問題(四)角平分線與軸對稱(五)等腰直角三角形,等邊三角形(六)雙重直圖案與全等三角形典型例題講練重點例
2025-03-27 07:41
【摘要】三角形中的常用輔助線課程解讀一、學習目標:歸納、掌握三角形中的常見輔助線?二、重點、難點:1、全等三角形的常見輔助線的添加方法。2、掌握全等三角形的輔助線的添加方法并提高解決實際問題的能力。?????三、考點分析:全等三角形是初中數(shù)學中的重要內容之一,是今后學習其他知識的基礎。判斷三角形全等的公理
2025-04-19 23:10
【摘要】五種輔助線助你證全等在證明三角形全等時,有時需添加輔助線,下面介紹證明全等時常見的五種輔助線,可以幫助你更好的學習。?一、截長補短?一般地,當所證結論為線段的和、差關系,且這兩條線段不在同一直線上時,通??梢钥紤]用截長補短的辦法:或在長線段上截取一部分使之與短線段相等;或將短線段延長使其與長線段相等.?例1.如圖1,在△ABC中,∠ABC
2025-06-22 23:06
【摘要】倍長中線(線段)造全等前言:要求證的兩條線段AC、BF不在兩個全等的三角形中,因此證AC=BF困難,考慮能否通過輔助線把AC、BF轉化到同一個三角形中,由AD是中線,常采用中線倍長法,故延長AD到G,使DG=AD,連BG,再通過全等三角形和等線段代換即可證出。1、已知:如圖,AD是△ABC的中線,BE交AC于E,交AD于F,且AE=EF,求證:AC=BF2、已知在△
2025-06-22 23:09
【摘要】專業(yè)資料分享倍長中線(線段)造全等前言:要求證的兩條線段AC、BF不在兩個全等的三角形中,因此證AC=BF困難,考慮能否通過輔助線把AC、BF轉化到同一個三角形中,由AD是中線,常采用中線倍長法,故延長AD到G,使DG=AD,連BG,再通過全等三角形和等線段代換即可證出。1、已知:
2025-05-19 01:36
2025-06-22 20:37
【摘要】龍文教育中小學1對1課外輔導專家全等三角形問題中常見的輔助線的作法巧添輔助線一——倍長中線【夯實基礎】例:中,AD是的平分線,且BD=CD,求證AB=AC方法1:作DE⊥AB于E,作DF⊥AC于F,證明二次全等方法2:輔助線同上,利用面積方法
【摘要】五種輔助線助你證全等姚全剛在證明三角形全等時有時需添加輔助線,對學習幾何證明不久的學生而言往往是難點.下面介紹證明全等時常見的五種輔助線,供同學們學習時參考.一、截長補短一般地,當所證結論為線段的和、差關系,且這兩條線段不在同一直線上時,通常可以考慮用截長補短的辦法:或在長線段上截取一部分使之與短線段相等;或將短線段延長使其與長線段相等.例1.如圖1,在△ABC中,∠ABC
2025-06-22 22:43