【摘要】......海伊教育學(xué)科教師輔導(dǎo)講義學(xué)員編號(hào):年級(jí):九年級(jí)課時(shí)數(shù):學(xué)員姓名:張鴻敬輔導(dǎo)科目:數(shù)學(xué)學(xué)科教師:高
2025-04-20 01:00
【摘要】平面向量的實(shí)際背景及基本概念平面向量的線性運(yùn)算——教材解讀山東劉乃東一、要點(diǎn)精講1.向量的有關(guān)概念(1)向量:既有大小又有方向的量叫向量,一般用,,,…來(lái)表示,或用有向線段的起點(diǎn)與終點(diǎn)的大寫(xiě)字母表示,如。向量的大小,即向量的模(長(zhǎng)度),記作。注:向量與數(shù)量不同,數(shù)量之間可以比較大小,而兩個(gè)向量不能比較大小。(2)零向量:長(zhǎng)度為零的向量
2024-09-01 16:13
【摘要】平面向量的概念及線性運(yùn)算知識(shí)點(diǎn):1.向量的有關(guān)概念名稱(chēng)定義備注向量既有大小,又有方向的量統(tǒng)稱(chēng)為向量;向量的大小叫做向量的長(zhǎng)度(或稱(chēng)模)平面向量是自由向量零向量長(zhǎng)度為0的向量;其方向是任意的記作0單位向量長(zhǎng)度等于1個(gè)單位的向量非零向量a的單位向量為±平行向量如果表示兩個(gè)向量的有向線段所在的直線平行或重合,則稱(chēng)這兩個(gè)向量平行或
2025-06-29 04:22
【摘要】平面向量的線性運(yùn)算一、選擇題1.若是任一非零向量,是單位向量,下列各式①||>||;②∥;③||>0;④||=±1;⑤=,其中正確的有()A.①④⑤ B.③ C.①②③⑤ D.②③⑤2.O是所在平面內(nèi)一點(diǎn),D為BC邊上中點(diǎn),,則()A. B. C. D.3.把平面上所有單位向量歸結(jié)到共同的始點(diǎn),那么這些向量的終點(diǎn)所
2025-03-28 01:22
【摘要】......平面向量的線性運(yùn)算學(xué)習(xí)過(guò)程知識(shí)點(diǎn)一:向量的加法(1)定義已知非零向量,在平面內(nèi)任取一點(diǎn)A,作=,=,則向量叫做與的和,記作,即=+=.求兩個(gè)向量和的運(yùn)算,叫做叫向量的加法.這種求向量和的方法,稱(chēng)為向量加法的三角形
【摘要】高一培訓(xùn) 平面向量及其線性運(yùn)算導(dǎo)學(xué)目標(biāo):、、減法的運(yùn)算,,.自主梳理1.向量的有關(guān)概念(1)向量的定義:既有______又有______的量叫做向量.(2)表示方法:用,,b,…或用,,…表示.(3)模:向量的______叫向量的模,記作________或_______.(4)零向量:長(zhǎng)度為零的向量叫做零向量,記作0;零向量的方向是_______
2025-06-10 23:06
【摘要】平面向量的概念與線性運(yùn)算知識(shí)點(diǎn)1.向量:既有大小,又有方向的量.2.?dāng)?shù)量:只有大小,沒(méi)有方向的量.3.有向線段的三要素:起點(diǎn)、方向、長(zhǎng)度.4.零向量:長(zhǎng)度為的向量.5.單位向量:長(zhǎng)度等于個(gè)單位的向量.6.平行向量(共線向量):方向相同或相反的非零向量.零向量與任一向量平行. 注:任一組平平行向量都可以平移到同一直線上7.相等向量:長(zhǎng)度相等且方向相同的向量.
2025-06-28 14:47
【摘要】人教版新課標(biāo)普通高中◎數(shù)學(xué)④必修平面向量的線性運(yùn)算教案A第1課時(shí)教學(xué)目標(biāo)一、知識(shí)與技能1.掌握向量的加減法運(yùn)算,并理解其幾何意義.2.會(huì)用三角形法則和平行四邊形法則作兩個(gè)向量的和向量和差向量,培養(yǎng)數(shù)形結(jié)合解決問(wèn)題的能力.3.通過(guò)將向量運(yùn)算與熟悉的數(shù)的運(yùn)算進(jìn)行類(lèi)比,使學(xué)生掌握向量加減法運(yùn)算的交換律和結(jié)合律,并會(huì)用它們進(jìn)行向量計(jì)算,滲透類(lèi)比的數(shù)學(xué)方
2025-04-20 01:16
【摘要】平面向量定義及線性運(yùn)算練習(xí)題一.選擇題1、下列說(shuō)法正確的是(?。〢、數(shù)量可以比較大小,向量也可以比較大小.B、方向不同的向量不能比較大小,但同向的可以比較大小.C、、向量的??梢员容^大小.2、給出下列六個(gè)命題:①兩個(gè)向量相等,則它們的起點(diǎn)相同,終點(diǎn)相同;②若,則;③若,則四邊形ABCD是平行四邊形;④平行四邊形ABCD中,一定有;⑤若,,則;⑥,,則.
【摘要】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運(yùn)算有何特點(diǎn)?類(lèi)似地,由平面向量的分解定理,對(duì)于平面上的任意向量,均可以分解為不共線的兩個(gè)向量和使得a→11λa→22λa→=a
2024-11-16 17:12
【摘要】......平面向量一、知識(shí)溫故:既有大小又有方向的量叫向量,有二個(gè)要素:大小、方向.:①用有向線段表示;②用字母、等表示;③平面向量的坐標(biāo)表示:分別取與軸、軸方向相同的兩個(gè)單位向量、作為基底。任作一個(gè)向量,由平面向量基本定理
【摘要】第五單元平面向量與復(fù)數(shù)第一節(jié)平面向量的概念及其線性運(yùn)算基礎(chǔ)梳理名稱(chēng)定義表示法向量既有又有的量;向量的大小叫做向量的(或),向量_______模_________零向量長(zhǎng)度為的向量;其方向是任意的
2024-11-16 18:19
【摘要】××××中學(xué)教學(xué)設(shè)計(jì)方案年月日星期第節(jié)課題平面向量的坐標(biāo)運(yùn)算章節(jié)第五章第二節(jié)教學(xué)目的知識(shí)目標(biāo)1.了解平面向量的基本定理,理解平面向量的坐標(biāo)的概念,會(huì)用坐標(biāo)形式進(jìn)行向量
2024-08-15 16:11
【摘要】第1節(jié)平面向量的概念及線性運(yùn)算(對(duì)應(yīng)學(xué)生用書(shū)第59~60頁(yè))1.向量的有關(guān)概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的長(zhǎng)度(或稱(chēng)模).(2)零向量:長(zhǎng)度為0的向量叫做零向量,其方向是任意的.(3)單位向量:長(zhǎng)度等于1個(gè)單位的向量.(4)平行向量:方向相同
2024-11-15 09:01
2024-11-15 21:09