【摘要】快樂學習&提高成績最值問題之將軍飲馬學生姓名:年級:科目:.任課教師:日期:時段:.
2025-03-28 03:44
【摘要】高考數(shù)學母題規(guī)劃,助你考入清華北大!楊培明(電話:13965261699)數(shù)學叢書,給您一個智慧的人生!高考數(shù)學母題[母題]Ⅰ(17-55):將軍飲馬原理(473)
2024-11-06 15:43
【摘要】將軍飲馬模型將軍飲馬模型一、背景知識:【傳說】早在古羅馬時代,傳說亞歷山大城有一位精通數(shù)學和物理的學者,名叫海倫.一天,一位羅馬將軍專程去拜訪他,向他請教一個百思不得其解的問題.將軍每天從軍營A出發(fā),先到河邊飲馬,然后再去河岸同
2025-05-16 23:49
【摘要】“將軍飲馬”類題型大全一.求線段和最值1(一)兩定一動型例1:如圖,AM⊥EF,BN⊥EF,垂足為M、N,MN=12m,AM=5m,BN=4m,P是EF上任意一點,則PA+PB的最小值是______m.分析:這是最基本的將軍飲馬問題,A,B是定點,P是動點,屬于兩定一動將軍飲馬型,根據(jù)常見的“定點定線作對稱”,可作點A關(guān)于EF的對稱點A’,根據(jù)兩點之間,線段最短,
2025-04-19 12:57
【摘要】最值問題“最值”問題大都歸于兩類基本模型:Ⅰ、歸于函數(shù)模型:即利用一次函數(shù)的增減性和二次函數(shù)的對稱性及增減性,確定某范圍內(nèi)函數(shù)的最大或最小值Ⅱ、歸于幾何模型,這類模型又分為兩種情況:(1)歸于“兩點之間的連線中,線段最短”。凡屬于求“變動的兩線段之和的最小值”時,大都應(yīng)用這一模型。(2)歸于“三角形兩邊之差小于第三邊”凡屬于求“變動的兩線段之差的最大值”時,大
2025-04-07 03:48
【摘要】初中幾何最值問題例題精講一、三點共線1、構(gòu)造三角形【例1】在銳角中,AB=4,BC=5,∠ACB=45°,將△ABC繞點B按逆時針方向旋轉(zhuǎn),得到△A1BC1.點E為線段AB中點,點P是線段AC上的動點,在△ABC繞點B按逆時針方向旋轉(zhuǎn)過程中,點P的對應(yīng)點是點P1,求線段EP1長度的最大值與最小值.【鞏固】以平面上一點O為直角頂點,
2025-03-27 12:33
【摘要】鄖西縣河夾中學段廉潔最短路徑問題將軍飲馬問題造橋選址問題最短路徑問題①垂線段最短。②兩點之間,線段最短。LABABLC問題1如圖,牧馬人從A地出發(fā),到一條筆直的河邊l飲馬,然后到B地.牧馬人到河邊的什么地方飲馬,可使所走的路徑最短?
2025-03-10 13:35
【摘要】幾何最值問題(講義)l解決幾何最值問題的通常思路_______________________,_______________________,__________________是解決幾何最值問題的理論依據(jù),___________________________是解決最值問題的關(guān)鍵.通過轉(zhuǎn)化減少變量,向三個定理靠攏進而解決問題;直接調(diào)用基本模型也是解決幾何最值問題的高效手段.
2025-03-27 12:12
【摘要】專題 最值問題【考點聚焦】考點1:向量的概念、向量的加法和減法、向量的坐標運算、平面向量的數(shù)量積.考點2:解斜三角形.考點3:線段的定比分點、平移.考點4:向量在平面解析幾何、三角、復數(shù)中的運用.考點5:向量在物理學中的運用.【自我檢測】1、求函數(shù)最值的方法:配方法,單調(diào)性法,均值不等式法,導數(shù)法,判別式法,三角函數(shù)有界性,圖象法, 2、求幾類重要函數(shù)
2025-08-07 10:11
【摘要】......橢圓中的最值問題與定點、定值問題解決與橢圓有關(guān)的最值問題的常用方法(1)利用定義轉(zhuǎn)化為幾何問題處理;(2)利用數(shù)形結(jié)合,挖掘數(shù)學表達式的幾何特征進而求解;(3)利用函數(shù)最值得探求方法,將其轉(zhuǎn)化為區(qū)間上的二次函數(shù)
2025-03-28 04:50
【摘要】......專題三:含絕對值函數(shù)的最值問題1.已知函數(shù)(),若對任意的,不等式恒成立,求實數(shù)的取值范圍.不等式化為即:(*)對任意的恒成立因為,所以分如下情況討論:[來源:學科網(wǎng)ZXXK]①當時,不等式(*)②當
2025-03-27 23:42
【摘要】...... 二次函數(shù)中的最值問題重難點復習一般地,如果是常數(shù),,那么叫做的二次函數(shù).二次函數(shù)用配方法可化成:的形式的形式,得到頂點為(,),對稱軸是.,∴頂點是,對稱軸是直線.二次函數(shù)常用來解決最值
2025-03-27 12:30
【摘要】初中代數(shù)最值問題例題精講一、利用非負性【例1】求的最小值【鞏固】設(shè)為實數(shù),那么的最小值是__________.二、利用絕對值的幾何意義【例2】求的最小值【鞏固】若,,且的最小值是7,則_________三、利用二次函數(shù)的最值【例3】四邊形的兩條對角線相互垂直,并且和等于10,求它們的長
2025-03-27 12:31
【摘要】.....中考最值問題講義“最值”問題:就是求一個變量在某范圍內(nèi)取最大或最小值的問題。與幾何有關(guān)的最小值(或最大值)問題,(目標不明確),解題時需要運用動態(tài)思維、數(shù)形結(jié)合、特殊與一般相結(jié)合、邏輯推理與合情想象相結(jié)合等思想方法.:
2025-03-27 06:15
【摘要】圓中的最值問題【考題展示】題1(2012年武漢中考)在坐標系中,點A的坐標為(3,0),點B為y軸正半軸上的一點,點C是第一象限內(nèi)一點,且AC=2.設(shè)tan∠BOC=m,則m的取值范圍是_________.題2(2013年武漢元調(diào))如圖,在邊長為1的等邊△OAB中,以邊AB為直徑作⊙D,以O(shè)為圓心OA長為半徑作⊙O,C為半圓弧上的一個動點(不與A、B兩點重合),射線AC交
2025-03-28 00:00