【摘要】《相交線與平行線綜合探究型題》 1.(2014春?棲霞市期末)如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補.(1)試判斷直線AB與直線CD的位置關系,并說明理由;(2)如圖2,∠BEF與∠EFD的角平分線交于點P,EP與CD交于點G,點H是MN上一點,且GH⊥EG,求證:PF∥GH;(3)如圖3,在(2)的條件下,連接PH,K是GH上一點使∠PHK=
2025-03-28 03:17
【摘要】動點問題1、如圖1,E、F、G、H按照AE=CG,BF=DH,BF=nAE(n是正整數(shù))是關系,分別在兩鄰邊長a,na的矩形ABCD各邊上運動,設AE=x,四邊形EFGH的面積為S。ABCDEFGHnaa圖1(1)當n=1,2是時,如圖2、圖3,觀察
2024-11-22 20:45
【摘要】動點的軌跡問題根據(jù)動點的運動規(guī)律求出動點的軌跡方程,這是解析幾何的一大課題:一方面求軌跡方程的實質(zhì)是將“形”轉(zhuǎn)化為“數(shù)”,將“曲線”轉(zhuǎn)化為“方程”,通過對方程的研究來認識曲線的性質(zhì);另一方面求軌跡方程是培養(yǎng)學生數(shù)形轉(zhuǎn)化的思想、方法以及技巧的極好教材。該內(nèi)容不僅貫穿于“圓錐曲線”的教學的全過程,而且在建構思想、函數(shù)方程思想、化歸轉(zhuǎn)化思想等方面均有體現(xiàn)和滲透。軌跡問題是高考中的一個熱點
2025-03-27 12:53
【摘要】......數(shù)軸上動點問題【教學目標】1、學會用動態(tài)思維、方程的思想去分析問題和解決問題2、學會抓住動中含靜的思路(動時兩變量間的關系,靜時兩個變量間的等量關系)【教學重難點】重點:學會用動態(tài)思維、方程的思想去分析問
2025-03-28 03:10
【摘要】動點問題專題訓練1、如圖,已知中,厘米,厘米,點為的中點.(1)如果點P在線段BC上以3厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.AQCDBP①若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,與是否全等,請說明理由;②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使與全等?(2)若點Q以②中的運動
2025-01-17 17:42
【摘要】......七年級線段動點問題1、如圖1,直線AB上有一點P,點M、N分別為線段PA、PB的中點AB=14.(1)若點P在線段AB上,且AP=8,則線段MN
2025-03-28 07:09
【摘要】專業(yè)整理分享1.(2017秋﹒荊州區(qū)校級月考)已知,數(shù)軸上點A在原點左邊,到原點的距離為8個單位長度,點B在原點的右邊,從點A走到點B,要經(jīng)過32個單位長度.(1)求A、B兩點所對應的數(shù);(2)若點C也是數(shù)軸上的點,點C到點B的距離是點C到原點的距離的3倍,求點C對應的數(shù);(3
【摘要】1.(2017秋﹒荊州區(qū)校級月考)已知,數(shù)軸上點A在原點左邊,到原點的距離為8個單位長度,點B在原點的右邊,從點A走到點B,要經(jīng)過32個單位長度.(1)求A、B兩點所對應的數(shù);(2)若點C也是數(shù)軸上的點,點C到點B的距離是點C到原點的距離的3倍,求點C對應的數(shù);(3)已知,點M從點A向右出發(fā),速度為每秒1個單位長度,同時點N從點B向右出發(fā),速度為每秒2個單位長度,設線段NO的中點為P
【摘要】......動點問題所謂“動點型問題”是指題設圖形中存在一個或多個動點,它們在線段、,靈活運用有關數(shù)學知識解決問題.關鍵:動中求靜.數(shù)學思想:分類思想數(shù)形結合思想轉(zhuǎn)化思想1、如圖1,梯形ABCD中,AD∥
2025-06-21 06:53
【摘要】本資料來源于《七彩教育網(wǎng)運動變化型問題專題復習例1如圖在Rt△ABC中,∠C=90°,AC=12,BC=16,動點P從點A出發(fā)沿AC邊向點C以每秒3個單位長的速度運動,動點Q從點C出發(fā)沿CB邊向點B以每秒4個單位長的速度運動.P,Q分別從點A,C同時出發(fā),當其中一點到達端點時,另一點也隨之停止運動.在運動過程中,△PCQ關于直線PQ對稱的圖形是△PDQ.設運動時間為
2025-04-07 03:46
【摘要】......圓中的動態(tài)問題【方法點撥】圓中的動態(tài)問題實際是圓的分類討論問題,做這種題型重要的是如何將動點轉(zhuǎn)化為固定的點,從而將題型變?yōu)榉诸愑懻摗镜湫屠}】題型一:圓中的折疊問題例題一(2012
2025-03-28 00:00
【摘要】......數(shù)軸上的動點問題1、如圖,點A、B在數(shù)軸上表示的數(shù)分別是60、一80(單位厘米).甲蝸牛從點A出發(fā),沿著射線A0一直以每分鐘a厘米的速度爬行,乙蝸牛從點B出發(fā),沿著射線B0一直勻速爬行,乙蝸牛的速度是甲蝸
【摘要】專業(yè)整理分享數(shù)軸上的線段與動點問題?1.數(shù)軸上兩點間的距離,即為這兩點所對應的坐標差的絕對值,也即用右邊的數(shù)減去左邊的數(shù)的差。即數(shù)軸上兩點間的距離=右邊點表示的數(shù)—左邊點表示的數(shù)。?2.點在數(shù)軸上運動時,由于數(shù)軸向右的方向為正方向,因此向右運動的速度看作正速度
【摘要】......數(shù)軸上的線段與動點問題?1.數(shù)軸上兩點間的距離,即為這兩點所對應的坐標差的絕對值,也即用右邊的數(shù)減去左邊的數(shù)的差。即數(shù)軸上兩點間的距離=右邊點表示的數(shù)—左邊點表示的數(shù)。?2.點在數(shù)軸上運動時,由于數(shù)
【摘要】動點問題(與圓相關)1.如圖,在平面直角坐標系中,四邊形OABC是梯形,BC∥AO,頂點O在坐標原點,頂點A(4,0),頂點B(1,4).動點P從O出發(fā),以每秒1個單位長度的速度沿OA的方向向A運動;同時,動點Q從A出發(fā),以每秒2個單位長度的速度沿A→B→C的方向向C運動.當其中一個點到達終點時,另一個也隨之停止.設運動時