【摘要】榆林教學資源網(wǎng)排列組合問題的20種解法排列組合問題聯(lián)系實際生動有趣,但題型多樣,思路靈活,因此解決排列組合問題,首先要認真審題,弄清楚是排列問題、組合問題還是排列與組合綜合問題;其次要抓住問題的本質(zhì)特征,采用合理恰當?shù)姆椒▉硖幚怼?加法原理)完成一件事,有類辦法,在第1類辦法中有種不
2025-03-28 02:37
【摘要】圓夢教育中心高考難點排列組合排列組合問題聯(lián)系實際生動有趣,但題型多樣,思路靈活,因此解決排列組合問題,首先要認真審題,弄清楚是排列問題、組合問題還是排列與組合綜合問題;其次要抓住問題的本質(zhì)特征,采用合理恰當?shù)姆椒▉硖幚?。復習鞏?加法原理)完成一件事,有類辦法,在第1類辦法中有種不同的方法,在第2類辦法中有種不同的方法,…,在第類辦法中有種不同的方法,那
2025-06-28 07:09
【摘要】排列組合問題的常見解法,分給7個班,每班至少一個,有多少種分配方案?解:因為10個名額沒有差別,把它們排成一排.相鄰名額之間形成9個空隙.在9個空檔中選6個位置插個隔板,可把名額分成7份,對應地分給7個班級,每一種插板方法對應一種分法共有種分法.注:這和投信問題是不同的,投信問題的關(guān)鍵是信不同,郵筒也不同,而這里的問題是郵筒不同,但信是相同的.即班級不同,但名額都是一
2024-08-16 08:51
【摘要】二十種排列組合問題的解法排列組合問題聯(lián)系實際生動有趣,但題型多樣,思路靈活,因此解決排列組合問題,首先要認真審題,弄清楚是排列問題、組合問題還是排列與組合綜合問題;其次要抓住問題的本質(zhì)特征,采用合理恰當?shù)姆椒▉硖幚恚虒W目標.;能運用解題策略解決簡單的綜合應用題.提高學生解決問題分析問題的能力.復習鞏固(加法原理)完成一件事,有類辦法,在第1類辦法中
【摘要】排列組合綜合問題教學目標通過教學,學生在進一步加深對排列、組合意義理解的基礎(chǔ)上,掌握有關(guān)排列、組合綜合題的基本解法,提高分析問題和解決問題的能力,學會分類討論的思想.教學重點與難點重點:排列、組合綜合題的解法.難點:正確的分類、分步.教學用具投影儀.教學過程設(shè)計(一)引入師:現(xiàn)在我們大家已經(jīng)學習和掌握了一些排列問題和組
【摘要】高考數(shù)學復習解排列組合應用題的21種策略排列組合問題是高考的必考題,它聯(lián)系實際生動有趣,但題型多樣,思路靈活,不易掌握,實踐證明,掌握題型和解題方法,識別模式,熟練運用,是解決排列組合應用題的有效途徑;下面就談一談排列組合應用題的解題策略.:題目中規(guī)定相鄰的幾個元素捆綁成一個組,當作一個大元素參與排列.,如果必須相鄰且在的右邊,那么不同的排法種數(shù)有A、60種B、48
2024-08-06 07:24
【摘要】精品資源與幾何有關(guān)的排列組合題的解法排列組合是高考的必考內(nèi)容,而與幾何有關(guān)的排列組合題在歷年的高考中也經(jīng)常出現(xiàn),此類題的常用解法主要有以下幾種:一.總體淘汰法先在弱化條件下算出總數(shù),再嚴格篩選,把少數(shù)不合條件的除去。例1.(1996年全國高考題)正六邊形的中心和頂點共7個點,以其中3個點為頂點的三角形共有_________________個。
2025-03-27 05:48
【摘要】排列組合21種模型:題目中規(guī)定相鄰的幾個元素捆綁成一個組,當作一個大元素參與排列.,如果必須相鄰且在的右邊,那么不同的排法種數(shù)有A、60種B、48種C、36種D、24種解析:把視為一人,且固定在的右邊,則本題相當于4人的全排列,種,答案:.:元素相離(即不相鄰)問題,可先把無位置要求的幾個元素全排列,再把規(guī)定的相離的幾個元素插入上述幾個元素的
2024-08-06 07:25
【摘要】解決排列組合中涂色問題的常見方法及策略與涂色問題有關(guān)的試題新穎有趣,其中包含著豐富的數(shù)學思想。解決涂色問題方法技巧性強且靈活多變,故這類問題的利于培養(yǎng)學生的創(chuàng)新思維能力、分析問題與觀察問題的能力,有利于開發(fā)學生的智力。本文擬總結(jié)涂色問題的常見類型及求解方法。一、區(qū)域涂色問題1、根據(jù)分步計數(shù)原理,對各個區(qū)域分步涂色,這是處理染色問題的基本方法。例1、用5種不同的顏色給圖中標①
【摘要】排列組合問題經(jīng)典題型與通用方法:題目中規(guī)定相鄰的幾個元素捆綁成一個組,當作一個大元素參與排列.,如果必須相鄰且在的右邊,則不同的排法有()A、60種B、48種C、36種D、24種:元素相離(即不相鄰)問題,可先把無位置要求的幾個元素全排列,再把規(guī)定的相離的幾個元素插入上述幾個元素的空位和兩端.,如果甲乙兩個必須不相鄰,那么不同的排法種
【摘要】高考數(shù)學中涂色問題的常見解法及策略與涂色問題有關(guān)的試題新穎有趣,近年已經(jīng)在高考題中出現(xiàn),其中包含著豐富的數(shù)學思想。解決涂色問題方法技巧性強且靈活多變,因而這類問題有利于培養(yǎng)學生的創(chuàng)新思維能力、分析問題與觀察問題的能力,有利于開發(fā)學生的智力。本文擬總結(jié)涂色問題的常見類型及求解方法1、根據(jù)分步計數(shù)原理,對各個區(qū)域分步涂色,這是處理染色問題的基本方法。例1。用5種不同的顏色給圖中
【摘要】完美WORD格式巧解排列組合的21種模型排列組合問題是高考的必考題,它聯(lián)系實際生動有趣,但題型多樣,思路靈活,,掌握題型和識別模式,并熟練運用,.:題目中規(guī)定相鄰的幾個元素捆綁成一個組,當作一個大元素參與排列.,如果必須相鄰且在的右邊,那么不同的排法種數(shù)有A、60種
2025-07-01 13:29
【摘要】1、基本概念和考點2、合理分類和準確分步3、特殊元素和特殊位置問題4、相鄰相間問題5、定序問題6、分房問題7、環(huán)排、多排問題12、小集團問題10、先選后排問題9、平均分組問題11、構(gòu)造模型策略8、實驗法(枚舉法)13、其它特殊方法排列組合應用題解法綜述(目錄)排列組合應用題解法
2025-01-11 13:53
【摘要】排列,組合問題的解答策略第四節(jié)相鄰問題捆綁法?例13:6名同學排成一排,其中甲,乙兩人必須排在一起的不同排法有多少種??例14:從單詞“equation”中選取5個不同的字母排成一排,含有“qu”(其中“qu”的相連且順序不變)的不同排列共有多少個??例15:計劃在某畫廊展開10幅不同的畫,
2024-11-14 22:56