【摘要】全等三角形作輔助線經(jīng)典例題常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”,所考知識點(diǎn)
2025-03-27 07:38
【摘要】全等三角形問題中常見的輔助線——截長補(bǔ)短法例1、如圖,中,AB=2AC,AD平分,且AD=BD,求證:CD⊥AC例2、如圖,AD∥BC,AE,BE分別平分∠DAB,∠CBA,CD過點(diǎn)E,求證;AB=AD+BC例3、如圖,已知在內(nèi),,,P,Q分別在BC,CA上,并且AP,BQ分別是,的角平分線。求證:BQ+AQ=AB+BP
2025-03-27 07:41
【摘要】八年級數(shù)學(xué)上冊輔助線專題教學(xué)目標(biāo):掌握各種類型的全等三角形的證明方法教學(xué)重點(diǎn):構(gòu)造全等三角形ZoQ0KC;tE^B101`教學(xué)難點(diǎn):如何巧妙作輔助線知識點(diǎn):(1)截長補(bǔ)短型(二)中點(diǎn)線段倍長問題(三)蝴蝶形圖案解決定值問題(四)角平分線與軸對稱(五)等腰直角三角形,等邊三角形(六)雙重直圖案與全等三角形典型例題講練重點(diǎn)例
【摘要】全等三角形輔助線系列之三與截長補(bǔ)短有關(guān)的輔助線作法大全一、截長補(bǔ)短法構(gòu)造全等三角形截長補(bǔ)短法,是初中數(shù)學(xué)幾何題中一種輔助線的添加方法,也是把幾何題化難為易的一種思想.所謂“截長”,就是將三者中最長的那條線段一分為二,使其中的一條線段等于已知的兩條較短線段中的一條,然后證明其中的另一段與已知的另一條線段相等;所謂“補(bǔ)短”,就是將一個(gè)已知的較短的線段延長至與另一個(gè)已知的較短的長度相等
2024-08-04 05:40
【摘要】全等三角形的截長補(bǔ)短法(1)板塊一、截長補(bǔ)短【例1】(年北京中考題)已知中,,、分別平分和,、交于點(diǎn),試判斷、、的數(shù)量關(guān)系,并加以證明.【例2】如圖,點(diǎn)為正三角形的邊所在直線上的任意一點(diǎn)(點(diǎn)除外),作,射線與外角的平分線交于點(diǎn),與有怎樣的數(shù)量關(guān)系?【例3】
【摘要】第1頁共3頁八年級數(shù)學(xué)全等三角形輔助線添加之截長補(bǔ)短(全等三角形)拔高練習(xí)試卷簡介:本講測試題共兩個(gè)大題,第一題是證明題,共7個(gè)小題,每小題10分;第二題解答題,2個(gè)小題,每小題15分。學(xué)習(xí)建議:本講內(nèi)容是三角形全等的判定——輔助線添加之截長補(bǔ)短,其中通過截長補(bǔ)短來添加輔助線是重點(diǎn),也是難點(diǎn)。希望
2024-08-24 22:00
【摘要】五種輔助線助你證全等在證明三角形全等時(shí),有時(shí)需添加輔助線,下面介紹證明全等時(shí)常見的五種輔助線,可以幫助你更好的學(xué)習(xí)。?一、截長補(bǔ)短?一般地,當(dāng)所證結(jié)論為線段的和、差關(guān)系,且這兩條線段不在同一直線上時(shí),通??梢钥紤]用截長補(bǔ)短的辦法:或在長線段上截取一部分使之與短線段相等;或?qū)⒍叹€段延長使其與長線段相等.?例1.如圖1,在△ABC中,∠ABC
2025-06-22 23:06
【摘要】倍長中線(線段)造全等前言:要求證的兩條線段AC、BF不在兩個(gè)全等的三角形中,因此證AC=BF困難,考慮能否通過輔助線把AC、BF轉(zhuǎn)化到同一個(gè)三角形中,由AD是中線,常采用中線倍長法,故延長AD到G,使DG=AD,連BG,再通過全等三角形和等線段代換即可證出。1、已知:如圖,AD是△ABC的中線,BE交AC于E,交AD于F,且AE=EF,求證:AC=BF2、已知在△
2025-06-22 23:09
【摘要】專業(yè)資料分享倍長中線(線段)造全等前言:要求證的兩條線段AC、BF不在兩個(gè)全等的三角形中,因此證AC=BF困難,考慮能否通過輔助線把AC、BF轉(zhuǎn)化到同一個(gè)三角形中,由AD是中線,常采用中線倍長法,故延長AD到G,使DG=AD,連BG,再通過全等三角形和等線段代換即可證出。1、已知:
2025-05-19 01:36
【摘要】......三角形全等問題一:題中出現(xiàn)什么的時(shí)候,我們應(yīng)該想到旋轉(zhuǎn)?(構(gòu)造旋轉(zhuǎn)的條件)問題二:旋轉(zhuǎn)都有哪些模型?【例1】如圖,P是正△ABC內(nèi)的一點(diǎn),若將△PBC繞點(diǎn)B旋轉(zhuǎn)到△P'BA,則∠PB
【摘要】龍文教育中小學(xué)1對1課外輔導(dǎo)專家全等三角形問題中常見的輔助線的作法巧添輔助線一——倍長中線【夯實(shí)基礎(chǔ)】例:中,AD是的平分線,且BD=CD,求證AB=AC方法1:作DE⊥AB于E,作DF⊥AC于F,證明二次全等方法2:輔助線同上,利用面積方法
2025-04-19 23:10
【摘要】五種輔助線助你證全等姚全剛在證明三角形全等時(shí)有時(shí)需添加輔助線,對學(xué)習(xí)幾何證明不久的學(xué)生而言往往是難點(diǎn).下面介紹證明全等時(shí)常見的五種輔助線,供同學(xué)們學(xué)習(xí)時(shí)參考.一、截長補(bǔ)短一般地,當(dāng)所證結(jié)論為線段的和、差關(guān)系,且這兩條線段不在同一直線上時(shí),通常可以考慮用截長補(bǔ)短的辦法:或在長線段上截取一部分使之與短線段相等;或?qū)⒍叹€段延長使其與長線段相等.例1.如圖1,在△ABC中,∠ABC
2025-06-22 22:43
【摘要】DCBAEDCBA常見輔助線的作法有以下幾種:1)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形。2)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,構(gòu)造全等三角形。3)截長法與補(bǔ)短法,具體做法是在某條線段上截取一條線段與特定線段相等,或是將某條線段延長,是之與特定線段相等,再利用三角形全
2024-12-12 00:46
【摘要】專題學(xué)習(xí)幾何證明中常見的“添輔助線”方法Ⅰ.連結(jié)目的:構(gòu)造全等三角形或等腰三角形語言描述:連結(jié)XY注意點(diǎn):雙添-在圖形上添虛線在證明過程中描述添法Ⅰ.連結(jié)典例1:如圖,AB=AD,BC=DC,求證:∠B=∠D.
2024-08-06 19:45