【摘要】全等三角形的截長補(bǔ)短法(1)板塊一、截長補(bǔ)短【例1】(年北京中考題)已知中,,、分別平分和,、交于點(diǎn),試判斷、、的數(shù)量關(guān)系,并加以證明.【例2】如圖,點(diǎn)為正三角形的邊所在直線上的任意一點(diǎn)(點(diǎn)除外),作,射線與外角的平分線交于點(diǎn),與有怎樣的數(shù)量關(guān)系?【例3】
2025-03-27 07:38
【摘要】......三角形全等問題一:題中出現(xiàn)什么的時(shí)候,我們應(yīng)該想到旋轉(zhuǎn)?(構(gòu)造旋轉(zhuǎn)的條件)問題二:旋轉(zhuǎn)都有哪些模型?【例1】如圖,P是正△ABC內(nèi)的一點(diǎn),若將△PBC繞點(diǎn)B旋轉(zhuǎn)到△P'BA,則∠PB
【摘要】......1、截長補(bǔ)短法證明三角形全等例1已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求證:AE=AD+BE練習(xí)1如圖,四邊形ABCD中,AB∥DC,BE、CE分別平分∠ABC、∠BCD
2025-06-27 16:16
【摘要】全等三角形中的截長補(bǔ)短問題°.?已知,如圖1-1,在四邊形ABCD中,BC>AB,AD=DC,BD平分∠ABC.求證:∠BAD+∠BCD=180ABCD圖1-1?證明:過點(diǎn)D作DE垂直BA的延長線于點(diǎn)E,作DF⊥BC于點(diǎn)F,如圖1-2圖1-2?∵BD平分∠ABC,∴
2025-07-29 19:08
【摘要】......八年級數(shù)學(xué)全等三角形輔助線添加之截長補(bǔ)短(全等三角形)拔高練習(xí)試卷簡介:本講測試題共兩個(gè)大題,第一題是證明題,共7個(gè)小題,每小題10分;第二題解答題,2個(gè)小題,每小題15分。學(xué)習(xí)建議:本講內(nèi)容是三角形
2025-06-22 23:06
【摘要】第1頁共2頁初中數(shù)學(xué)三角形全等之截長補(bǔ)短綜合測評卷一、單選題(共4道,每道25分),在直角梯形ABCD中,∠D=∠C=90°,AD∥BC,∠DAB的平分線交CD于E,且BE恰好平分∠ABC,則下列結(jié)論中錯(cuò)誤的是()⊥BE=DE+DE=BE=AD
2024-08-24 21:32
【摘要】全等三角形作輔助線經(jīng)典例題常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”,所考知識點(diǎn)
【摘要】全等三角形問題中常見的輔助線——截長補(bǔ)短法例1、如圖,中,AB=2AC,AD平分,且AD=BD,求證:CD⊥AC例2、如圖,AD∥BC,AE,BE分別平分∠DAB,∠CBA,CD過點(diǎn)E,求證;AB=AD+BC例3、如圖,已知在內(nèi),,,P,Q分別在BC,CA上,并且AP,BQ分別是,的角平分線。求證:BQ+AQ=AB+BP
2025-03-27 07:41
【摘要】一、手拉手模型要點(diǎn)一:手拉手模型特點(diǎn):由兩個(gè)等頂角的等腰三角形所組成,并且頂角的頂點(diǎn)為公共頂點(diǎn)結(jié)論:(1)△ABD≌△AEC(2)∠α+∠BOC=180°(3)OA平分∠BOC變形:,連結(jié)與,證明(1)(2)(3)與之間的夾角為(4)(5)(6)平分(7)
2025-06-28 02:44
【摘要】第1頁共3頁八年級數(shù)學(xué)全等三角形輔助線添加之截長補(bǔ)短(全等三角形)拔高練習(xí)試卷簡介:本講測試題共兩個(gè)大題,第一題是證明題,共7個(gè)小題,每小題10分;第二題解答題,2個(gè)小題,每小題15分。學(xué)習(xí)建議:本講內(nèi)容是三角形全等的判定——輔助線添加之截長補(bǔ)短,其中通過截長補(bǔ)短來添加輔助線是重點(diǎn),也是難點(diǎn)。希望
2024-08-24 22:00
【摘要】全等三角形專題講解專題一全等三角形判別方法的應(yīng)用專題概說:判定兩個(gè)三角形全等的方法一般有以下4種:1.三邊對應(yīng)相等的兩個(gè)三角形全等(簡寫成“SSS”)2.兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等(簡寫成“SAS”)3.兩角和它們的夾邊對應(yīng)相等的兩個(gè)三角形全等(簡寫成“ASA”)4.兩個(gè)角和其中一個(gè)角的對邊對應(yīng)相等的兩個(gè)三角形全等(簡寫成“AAS”)而在判別
2025-06-10 15:37
【摘要】全等三角形總結(jié)A.考點(diǎn)精析、重點(diǎn)突破、學(xué)法點(diǎn)撥“全等四解”全等三角形是初中平面幾何的重要內(nèi)容,它為解決線段以及角的相等問題提供了重要工具,也為以后的學(xué)習(xí)奠定了必要的基礎(chǔ),因此要學(xué)好平面幾何,必須重視全等三角形的學(xué)習(xí).那么怎樣才能學(xué)好它呢?本文談四點(diǎn)意見,供同學(xué)們學(xué)習(xí)時(shí)參考.組成全等三角形的基本圖形大致有以下幾種:①平移型,如圖中的兩種圖形屬于平移型,它們可看
2025-04-19 23:02
【摘要】......全等三角形問題中常見的輔助線的作法常見輔助線的作法有以下幾種:最主要的是構(gòu)造全等三角形,構(gòu)造兩條邊之間的相等,兩個(gè)角之間的相等。1、添加輔助線的方法和語言表述(1)作線段:連接……;(2)作平行線:過點(diǎn)……作……
2025-03-27 07:39
【摘要】智慧在這里綻放,狀元從這里起航數(shù)學(xué)思維方法講義之一年級:九年級§第1講證明(三角形專題)【學(xué)習(xí)目標(biāo)】1、牢記三角形的有關(guān)性質(zhì)及其判定;2、運(yùn)用三角形的性質(zhì)及判定進(jìn)行有關(guān)計(jì)算與證明。【考點(diǎn)透視】1、全等三角形的性質(zhì)與判定;2、等腰(等邊)三角形的性質(zhì)與判定;3、直角三角形的有關(guān)性質(zhì),勾股定理及其逆定理;4
2025-07-29 08:58
【摘要】精品資源第19課三角形與全等三角形知識點(diǎn):三角形,三角形的角平分線,中線,高線,三角形三邊間的不等關(guān)系,三角形的內(nèi)角和,三角形的分類,全等形,全等三角形及其性質(zhì),三角形全等判定大綱要求1.了解全等形,全等三角形的概念和性質(zhì),逆命題和逆定理的概念,理解三角形,三角形的頂點(diǎn),邊,內(nèi)角,外角,角平分線,中線和高線,線段中垂線等概念。2.理解三角形的任意兩邊之和大于第
2025-04-19 12:49