【摘要】第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)第15頁(yè)第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)
2025-03-25 04:31
【摘要】1715(1)[406頁(yè)]222xdxyd?【題型】簡(jiǎn)單微分方程?!窘狻糠e分一次,得12cdxxdxdy???1331cx??再積分一次,得21331cdxcdxxy?????通解為214121cxcxy???1725(
2024-10-22 18:07
【摘要】1期末考試考核點(diǎn)?一、偏導(dǎo)數(shù)?1、按定義求偏導(dǎo)數(shù)(填空題)?2、隱函數(shù)求全微分(及偏導(dǎo)數(shù))?3、二階偏導(dǎo)數(shù)(尤其注意抽象函數(shù))2一、偏導(dǎo)數(shù)?1、按定義求偏導(dǎo)數(shù)(填空題)?(1)chapter8一、5____)0,0(,)0,0(),(0)0,0(),(),('2233
【摘要】第四章不定積分一、原函數(shù))()(xfxF??或dxxfxdF)()(?稱是的原函數(shù))(xF)(xf二、不定積分CxFdxxf???)()(三、基本性質(zhì)??)()(xfdxxf?????dxxfdxxfd)()(??CxFdxxF????)()(CxFxdF???
2024-11-06 21:17
【摘要】高等數(shù)學(xué),微積分大補(bǔ)考復(fù)習(xí)題1.填空題1、若,則。無(wú)窮小2、函數(shù)的定義域?yàn)椤=23、有界函數(shù)與無(wú)窮小的乘積是。無(wú)窮小4、跳躍間斷點(diǎn)與可去間斷點(diǎn)統(tǒng)稱為:_______________。1類(lèi)間斷點(diǎn)5、極限_______________。1/36、如果函數(shù)在區(qū)間上的導(dǎo)數(shù)恒為零,那么在區(qū)間上是
2024-08-16 18:34
【摘要】掌握等價(jià)(高階,低階,同階)無(wú)窮小的概念和判別1.時(shí),與等價(jià)的無(wú)窮小量是________。A.B.C.D.2.若時(shí),,則________。A.1B.2C.3D.43.當(dāng)時(shí),與等價(jià)的無(wú)窮小量是________。A.B.C.D.4.當(dāng)時(shí),與的關(guān)系是
2025-06-10 19:14
【摘要】《微積分I》期末復(fù)習(xí)題說(shuō)明:本復(fù)習(xí)題僅供參考,部分積分題目不必做. 復(fù)習(xí)時(shí)應(yīng)以教材為本,特別是例題和習(xí)題.一、判斷題1、兩個(gè)無(wú)窮大量之和仍為無(wú)窮大量。()2、無(wú)界數(shù)列必發(fā)散。()3、可導(dǎo)的奇函數(shù)的導(dǎo)數(shù)為偶函數(shù)。()4、函數(shù)在其拐點(diǎn)處的二階導(dǎo)數(shù)有可能不存在。()5、閉區(qū)間上的連續(xù)函數(shù)是可積的。()6、無(wú)窮大量與有界量之積仍為無(wú)
2025-04-20 01:15
【摘要】典型例題例1.)16(log2)1(的定義域求函數(shù)xyx???解,0162??x,01??x,11??x????????214xxx,4221????xx及).4,2()2,1(?即例2).(.1,0,2)1()(xfxxxxx
2025-04-26 03:28
【摘要】第三章導(dǎo)數(shù)與微分outline?求導(dǎo):基本求導(dǎo)公式、復(fù)合函數(shù)求導(dǎo)、對(duì)數(shù)求導(dǎo)、分段函數(shù)求導(dǎo)、隱函數(shù)求導(dǎo)、反函數(shù)求導(dǎo)?微分:使用微分公式估值、求函數(shù)微分、求微分關(guān)系中的未知函數(shù)f(x)、參數(shù)方程求導(dǎo)法則、高階導(dǎo)數(shù)求取第一部分求導(dǎo)1、基本求導(dǎo)公式第一部分求導(dǎo)(1)y=(ax+b)/(cx+d)的導(dǎo)數(shù)
2024-08-03 17:58
【摘要】微積分(上)知識(shí)點(diǎn)微積分(上)復(fù)習(xí)2/58微積分(上)第一章函數(shù)函數(shù)的兩要素:定義域Df和對(duì)應(yīng)規(guī)則f,由f[?(x)]求f(x)奇偶性、單調(diào)性、有界性與周期性本義反函數(shù)、矯形反函數(shù))(1yfx??)(1xfy??單調(diào)函數(shù)一定存在反函數(shù)。成本函數(shù)、收益函
2025-01-22 21:34
【摘要】變速直線運(yùn)動(dòng)中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運(yùn)動(dòng)中路程為?21)(TTdttv設(shè)某物體作直線運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),且0)(?tv,求物體在這段時(shí)間內(nèi)所經(jīng)過(guò)的路程.另一方面這段路程可表示為)()(12TsTs?第六節(jié)微積分基本定理一、問(wèn)題
2024-08-02 11:18
【摘要】費(fèi)馬(fermat)引理第六節(jié)微分中值定理且在x0處可導(dǎo),若)(?或證則0?0?xyo0x設(shè)f(x)在點(diǎn)x0的某鄰域U(x0)內(nèi)有定義,有則例如,32)(2???xxxf).1)(3(???xx,]3,1[上連續(xù)在?,)3,1(上可
2024-08-02 11:20
【摘要】一、單項(xiàng)選擇題(1)函數(shù)??fx在0xx?處連續(xù)是??fx在0xx?處可微的()條件.(2)當(dāng)0x?時(shí),??21xe?是關(guān)于x的()(3)2x?是函數(shù)??
2025-01-11 22:17
【摘要】大學(xué)微積分總復(fù)習(xí)匯總初等函數(shù)一、基本初等函數(shù)1.冪函數(shù))(是常數(shù)???xyoxy2xy?xy?xy?11)1,1(xy1?2.指數(shù)函數(shù))1,0(???aaayxxey?xay?xay)1(?)1(?a)1,0(3.對(duì)數(shù)函數(shù))1,0(log???aaxyaxy
2024-08-16 22:47
【摘要】微積分初步復(fù)習(xí)試題一、填空題(每小題4分,本題共20分)?、焙瘮?shù)的定義域是 ?。踩?,則 2?。、城€在點(diǎn)處的切線方程是 .⒋ 0 .⒌微分方程的特解為.二、單項(xiàng)選擇題(每小題4分,本題共20分)⒈設(shè)函數(shù),則該函數(shù)是( A).A.偶函數(shù) B.奇函數(shù) C.非奇非偶函數(shù)D.既奇又偶函數(shù)
2025-06-21 13:43