【摘要】1715(1)[406頁]222xdxyd?【題型】簡單微分方程?!窘狻糠e分一次,得12cdxxdxdy???1331cx??再積分一次,得21331cdxcdxxy?????通解為214121cxcxy???1725(
2024-10-22 18:07
【摘要】第1頁第2頁第3頁第4頁第5頁第6頁第7頁第8頁第9頁第10頁第11頁第12頁第13頁第14頁第15頁第16頁第17頁第18頁第19頁第20頁第21頁第22頁第23頁
2025-03-25 04:31
【摘要】費(fèi)馬(fermat)引理第六節(jié)微分中值定理且在x0處可導(dǎo),若)(?或證則0?0?xyo0x設(shè)f(x)在點x0的某鄰域U(x0)內(nèi)有定義,有則例如,32)(2???xxxf).1)(3(???xx,]3,1[上連續(xù)在?,)3,1(上可
2025-07-25 11:20
【摘要】1第五章2考試內(nèi)容常數(shù)項級數(shù)的收斂與發(fā)散的概念,收斂級數(shù)的和的概念,級數(shù)的基本性質(zhì)與收斂的必要條件,幾何級數(shù)與P級數(shù)及其收斂性,正項級數(shù)收斂性的判別法,任意項級數(shù)的絕對收斂與條件收斂,交錯級數(shù)與萊布尼茨定理,冪級數(shù)及其收斂半徑、收斂區(qū)間(指開區(qū)間)和收斂域,冪級數(shù)的和函數(shù),冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì),簡單冪級數(shù)和函數(shù)的求法,初等函數(shù)的冪
2025-02-22 00:22
【摘要】abxyo??A曲邊梯形由連續(xù)曲線實例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2025-07-25 11:11
【摘要】定義1設(shè)函數(shù))(xf在區(qū)間),[??a上連續(xù),且)()(xfxF??,如果極限????babdxxf)(lim存在,則稱此極限為函數(shù))(xf在無窮區(qū)間),[??a上的反常積分,記作???adxxf)(.???adxxf)(?????babdxxf)(lim當(dāng)極限存在
2025-07-25 11:10
【摘要】(本科)《微積分》練習(xí)三答案一、填空題1.設(shè),則2.函數(shù)在點處的導(dǎo)數(shù)03.根據(jù)導(dǎo)數(shù)定義,函數(shù)在點處的導(dǎo)數(shù)不存在4.函數(shù)在點處的導(dǎo)數(shù)不存在5.設(shè)函數(shù)(其中為正整數(shù)),則
2025-06-23 05:58
【摘要】1—1解答1.設(shè)x11x1,求11xy1xyyxxy22解xy;1f(x,y)yxy22.設(shè),證明:3.求下列函數(shù)的定義域,并畫出定義域的圖形:(1)2
2025-01-12 08:40
【摘要】第十章微分方程§1、微分方程的基本概念1微分方程的定義:含有未知函數(shù)的倒數(shù)(或微分)的方程,稱為微分方程。未知函數(shù)為一元函數(shù)的微分方程稱為常微分方程未知函數(shù)為多元函數(shù),從而出現(xiàn)偏導(dǎo)數(shù)的微分方程稱為偏微分方程如:(1)yay??(2)()()dypxy
2024-12-11 00:51
【摘要】學(xué)期總復(fù)習(xí)微積分CI考試時間:2021年1月14日8:0010:001Chapter極限???數(shù)列極限函數(shù)極限??????數(shù)列極限運(yùn)算法則和性質(zhì)數(shù)列極限計算數(shù)列的通項函數(shù)極限定義(6種)函數(shù)極限運(yùn)算法則和性質(zhì)無窮小量等價替換無
2024-10-21 14:52
【摘要】第四章§2理解教材新知把握熱點考向應(yīng)用創(chuàng)新演練考點一考點二考點三已知函數(shù)f(x)=x,F(xiàn)(x)=12x2.問題1:f(x)和F(x)有何關(guān)系?提示:F′(x)=f(x).問題2:利用定積分的
2024-11-21 17:14
【摘要】微積分第八章課后習(xí)題答案習(xí)題8-11.(1)一階;(2)二階;(3)一階;(4)三階;(5)三階;(6)一階;(7)二階;(8)一階。2.(1)、(2)、(3)、(4)、(5)都是微分方程的通解。3..:.習(xí)題8-21.(1)原式化為:分離變量得:兩邊積分得:計算得:即:整理:所以:原微分方程的通解為:;(2)原式化為:分離變量得:
2025-06-23 05:31
【摘要】1期末考試考核點?一、偏導(dǎo)數(shù)?1、按定義求偏導(dǎo)數(shù)(填空題)?2、隱函數(shù)求全微分(及偏導(dǎo)數(shù))?3、二階偏導(dǎo)數(shù)(尤其注意抽象函數(shù))2一、偏導(dǎo)數(shù)?1、按定義求偏導(dǎo)數(shù)(填空題)?(1)chapter8一、5____)0,0(,)0,0(),(0)0,0(),(),('2233
【摘要】calculus§定積分基本積分方法301sinsinxxdx???例:求32sinsinsinsinsincosxxxxxx????解:由于被積函數(shù)(1)一、直接積分法cossin,02cossin,2xxxxxx
2025-01-22 21:34
【摘要】第二章微積分本章學(xué)習(xí)微積分的基本知識,包括函數(shù)概念、函數(shù)的極限、導(dǎo)數(shù)與微分、不定積分與定積分、廣義積分與微分方程等基本概念及其簡單計算方法與應(yīng)用.函數(shù)教學(xué)要求本節(jié)要求讀者在復(fù)習(xí)中學(xué)函數(shù)知識的基礎(chǔ)上加深理解函數(shù)概念.1.掌握由已知函數(shù)產(chǎn)生新函數(shù)的方法?函數(shù)的四則運(yùn)算,函數(shù)的復(fù)合,反函數(shù),歸納出初等函數(shù)的概念.2.
2024-08-25 15:49