【摘要】常用記號(hào)一?用R表示實(shí)數(shù)域,用C表示復(fù)數(shù)域。?Rn表示n維實(shí)向量集合;?Cn表示n維復(fù)向量集合;?表示實(shí)矩陣集合;?表示復(fù)矩陣集合;nmR?nmC?nm?nm?})(,{};)(,{rArankCACr
2025-01-22 22:49
【摘要】線性空間習(xí)題所指的線性運(yùn)算是否構(gòu)成實(shí)數(shù)域上的線性空間:1.次數(shù)等于)1(?nn解:不構(gòu)成。因兩個(gè)n次多項(xiàng)式相加不一定是n次多項(xiàng)式。例如(5)(2)3nnxx?????的實(shí)系數(shù)多項(xiàng)式的全體,對(duì)于多項(xiàng)式的加法和數(shù)量乘法;
2024-08-16 11:00
【摘要】馮媛難馮媛2,,.mnAkkkmknkAkAk???在矩陣中任取行列(),位于這些行列交叉處的個(gè)元素不改變它們?cè)谥兴幍奈恢么涡蚨玫碾A行列式,稱為矩陣的階子式一、矩陣秩的概念和性質(zhì)
【摘要】1廣義線性判別函數(shù)?出發(fā)點(diǎn)–線性判別函數(shù)簡單,容易實(shí)現(xiàn);–非線性判別函數(shù)復(fù)雜,不容易實(shí)現(xiàn);–若能將非線性判別函數(shù)轉(zhuǎn)換為線性判別函數(shù),則有利于模式分類的實(shí)現(xiàn)。2廣義線性判別函數(shù)?基本思想設(shè)有一個(gè)訓(xùn)練用的模式集{x},在模式空間x中線性不可分,但在模式空間x*中線性可分,其中x*的各個(gè)分量是
2025-05-16 12:18
【摘要】隨風(fēng)潛入夜?jié)櫸锛?xì)無聲(續(xù))李尚志中國科學(xué)技術(shù)大學(xué)2021/11/10數(shù)學(xué)實(shí)驗(yàn):幾何變換(x,y)?(x’,y’)?x’=f1(x,y),y’=f2(x,y)?曲線C:x=x(t),y=y(t)?曲線C’:x=f1(x(t),y(t)),
2024-10-22 01:08
【摘要】1第一講:線性規(guī)劃方法數(shù)學(xué)建模方法及其應(yīng)用線性規(guī)劃方法2線性規(guī)劃的一般模型;線性規(guī)劃解的概念與理論;線性規(guī)劃的求解方法;線性規(guī)劃的軟件求解方法;線性規(guī)劃的應(yīng)用案例分析。3線性規(guī)劃研究的是線性目標(biāo)函數(shù)在線性約束條件下的最值問題,在管理科學(xué)中有著廣泛的應(yīng)用。第十章
2025-02-24 12:49
【摘要】第三章矩陣的初等變換與線性方程組知識(shí)點(diǎn)回顧:克拉默法則結(jié)論1如果線性方程組(1)的系數(shù)行列式不等于零,則該線性方程組一定有解,而且解是唯一的.(P.24定理4)結(jié)論1′如果線性方程組無解或有兩個(gè)不同的解,則它的系數(shù)行列式必為零.(4')設(shè)11112211211222
2025-01-22 15:17
【摘要】向量組的秩向量組的極大線性無關(guān)組與秩歐氏空間向量空間的基維數(shù)坐標(biāo)基變換與坐標(biāo)變換北京科技大學(xué)《線性代數(shù)》課程組012:,,,rA???線性無關(guān)向量組,定義簡稱為極大無關(guān)組或最大無關(guān)組.12,,,r???若向量組A的一個(gè)部分組A0:滿足(1)
2025-02-24 12:43
【摘要】第五章線性空間與線性變換§1線性空間的概念線性空間也是線性代數(shù)的中心內(nèi)容之一,本章介紹線性空間的概念及其簡單性質(zhì),討論線性空間的基和維數(shù)的概念,介紹線性變換的概念和線性變換的矩陣表示.一.數(shù)域(1)0,1?K;定義
2024-10-21 19:01
【摘要】張保隆著現(xiàn)代管理數(shù)學(xué)2向量空間與線性轉(zhuǎn)換2-1向量與向量空間2-2線性獨(dú)立與基底2-3Rn的透視2-4線性轉(zhuǎn)換2-5線性轉(zhuǎn)換的代表矩陣2-6特徵值與特徵向量2-7二次形式現(xiàn)代管理數(shù)學(xué).Chapter2向量空間與線性轉(zhuǎn)換2-32-1
2024-10-21 18:27
【摘要】一、線性空間的定義?????k???第3章線性空間與線性變換§線性空間定義3.???????)1(????00)3(存在零元素0)4(????)(存在負(fù)元素???????1)5(??)()()6(kllk?????Kkk???)()8()()()2(???????
2024-10-03 17:45
【摘要】第1章線性空間與內(nèi)積空間本章將介紹兩個(gè)內(nèi)容,線性空間與內(nèi)積空間,它們是矩陣分析中兩個(gè)基本概念,同時(shí)也是重要的概念.線性空間是線性代數(shù)中向量空間概念的推廣,而內(nèi)積空間是不僅有代數(shù)結(jié)構(gòu),而且同時(shí)有拓?fù)浣Y(jié)構(gòu)的一種特殊的空間.它們都具有廣泛的應(yīng)用.線性空間在線性代數(shù)中,我們把n元有序數(shù)組稱為n維向量,并對(duì)n
2025-07-27 13:40
【摘要】MaxZ=CX.AX=bX?0基,基解,基可行解,可行基。⊙線性規(guī)劃問題的可行域D是凸集。⊙頂點(diǎn)與基可行解相對(duì)應(yīng)⊙線性規(guī)劃問題的最優(yōu)解,必定在D的頂點(diǎn)上達(dá)到。⊙目標(biāo)函數(shù)在多個(gè)頂點(diǎn)
2024-10-19 21:34
【摘要】第2章矩陣矩陣的概念??定義1由個(gè)數(shù)按一定順序排成行列的數(shù)表稱為一個(gè)行列矩陣,簡稱矩陣,記為或,其中表示位于
【摘要】線性代數(shù)課件第四節(jié)方陣的特征值與特征向量線性代數(shù)課件聊城大學(xué)線性代數(shù)課件主要內(nèi)容特征值,特征向量定義及其性質(zhì)一對(duì)角化的條件二小結(jié)三線性代數(shù)課件一特征值,特征向量定義及性質(zhì)線性代數(shù)課件一.特征值,特征向量定義及其性質(zhì)
2024-10-19 21:32