【摘要】不完全歸納的作用在于發(fā)現(xiàn)規(guī)律,探求結(jié)論,但結(jié)論是否為真有待證明,因而數(shù)學(xué)中我們常用歸納——猜想——證明的方法來解決與正整數(shù)有關(guān)的歸納型和存在型問題.[例1]設(shè)數(shù)列{an}滿足an+1=a2n-nan+1,n=1,2,3,?(1)當(dāng)a1=2時,求a2,a3
2025-01-18 08:43
【摘要】考情分析通過分析近三年的高考試題可以看出,不但考查用數(shù)學(xué)歸納法去證明現(xiàn)成的結(jié)論,還考查用數(shù)學(xué)歸納法證明新發(fā)現(xiàn)的結(jié)論的正確性.?dāng)?shù)學(xué)歸納法的應(yīng)用主要出現(xiàn)在數(shù)列解答題中,一般是先根據(jù)遞推公式寫出數(shù)列的前幾項,通過觀察項與項數(shù)的關(guān)系,猜想出數(shù)列的通項公式,再用數(shù)學(xué)歸納法進行證明,初步形成“觀察—歸納—猜想—證明”的思維模式;利用數(shù)學(xué)歸納法證明
2025-01-18 08:47
【摘要】在數(shù)學(xué)研究中,人們會遇到這樣的情況,對于任意正整數(shù)n或不小于某個數(shù)n0的任意正整數(shù)n,都有某種關(guān)系成立。對這類問題的證明我們將使用又一種重要的數(shù)學(xué)推理方法--數(shù)學(xué)歸納法與正整數(shù)有關(guān)的命題例如:1×4+2×7+
【摘要】思考1思考2復(fù)習(xí)引入練習(xí)答案作業(yè):課本54P6題數(shù)學(xué)歸納法證明不等式數(shù)學(xué)歸納法證明不等式(即n=n0第一個命題對應(yīng)的n的值,如n0=1)(歸納奠基);n=k時命題成立,證明當(dāng)n=k+1時命題也成立(歸納遞推).數(shù)學(xué)歸納法:關(guān)于正整數(shù)n的命題(相當(dāng)于多米諾骨牌
2025-01-18 08:38
【摘要】比較法證明不等式的依據(jù)是:不等式的意義及實數(shù)比較大小的充要條件.作差比較法證明的一般步驟是:①作差;②恒等變形;③判斷結(jié)果的符號;④下結(jié)論.其中,變形是證明推理中一個承上啟下的關(guān)鍵,變形的目的在于判斷差的符號,而不是考慮差能否化簡或值是多少,變形所用的方法要具體情況具體分析,可以配方,可以因式分解,可以運用一切有效的恒等變形的方法.[
2025-05-28 22:12
【摘要】本專題主要考查利用不等式性質(zhì)判斷不等式或有關(guān)結(jié)論是否成立,再就是利用不等式性質(zhì),進行數(shù)值(或代數(shù)式)大小的比較,有時考查分類討論思想,常與函數(shù)、數(shù)列等知識綜合進行考查.[例1]若a、b是任意實數(shù),且a>b,則()A.a(chǎn)2>b2B.ab<
2025-05-28 18:12
【摘要】第一篇:歸納法證明不等式 歸納法證明不等式 由于lnx0則x 1設(shè)f(x)=x-lnxf'(x)=1-1/x0 則f(x)為增函數(shù)f(x)f(1)=1 則xlnx 則可知道等式成...
2024-10-28 02:13
【摘要】第一篇:巧用數(shù)學(xué)歸納法證明不等式 巧用數(shù)學(xué)歸納法證明不等式 數(shù)學(xué)歸納法是解決與正整數(shù)有關(guān)的命題的數(shù)學(xué)方法,它是通過有限個步驟的推理,證明n取無限個正整數(shù)的情形。 第一步是證明n取第一個值n0時命...
2024-11-06 00:31
【摘要】第一篇:數(shù)學(xué)歸納法證明不等式教案 § 學(xué)習(xí)目標(biāo):、數(shù)學(xué)歸納法證明基本步驟; 、難點:、知識情景: (相當(dāng)于多米諾骨牌),我們可以采用下面方法來證明其正確性: (即n=no時命題成立)(歸納奠...
2024-10-29 04:04
【摘要】式用數(shù)學(xué)歸納法證明不等二.納法證明不等式歸進一步討論如何用數(shù)學(xué)下面我們結(jié)合具體例題.,,,,,,,,,:}{;,,,,,,,,,:}{.?,????????512256128643216842281644936251694112nnnnnbnaba證明你的結(jié)論小于從第幾項起觀察下面兩個數(shù)列例????
2024-11-21 17:34
【摘要】整合提升知識網(wǎng)絡(luò)典例精講數(shù)學(xué)歸納法是專門證明與自然數(shù)集有關(guān)的命題的一種方法.它可用來證明與自然數(shù)有關(guān)的代數(shù)恒等式、三角恒等式、不等式、整除性問題及幾何問題.在高考中,用數(shù)學(xué)歸納法證明與數(shù)列、函數(shù)有關(guān)的不等式是熱點問題,特別是數(shù)列中的歸納—猜想—證明是對觀察、分析、歸納、論證能力有一定要求的,這也是它成為高考熱點的主要原因.【
2024-11-23 22:43
2024-11-25 01:17
【摘要】考情分析從近兩年的高考試題來看,不等式的證明主要考查比較法與綜合法,而比較法多用作差比較,綜合法主要涉及基本不等式與不等式的性質(zhì),題目難度不大,屬中檔題.在證明不等式時,要依據(jù)命題提供的信息選擇合適的方法與技巧進行證明.如果已知條件與待證結(jié)論之間的聯(lián)系不明顯,可考慮用分析法;如果待證的命題以“至少”“至多”“恒成立
2025-01-10 08:22
【摘要】二用數(shù)學(xué)歸納法證明不等式知識梳理(1)n2-1,x≠0,n為大于1的自然數(shù),那么有___________;當(dāng)α是實數(shù),并且滿足α1或者α
2024-12-12 08:44
【摘要】書山有路勤為徑,學(xué)海無崖苦作舟少小不學(xué)習(xí),老來徒傷悲成功=艱苦的勞動+正確的方法+少談空話天才就是百分之一的靈感,百分之九十九的汗水!天才在于勤奮,努力才能成功!\復(fù)習(xí):?比較法是證明不等式的一種最基本、最重要的方法,用比較法證明不
2025-01-19 03:10