【摘要】一、問(wèn)題的提出二、定積分的定義三、存在定理四、幾何意義五、小結(jié)思考題第一節(jié)定積分的概念abxyo??A曲邊梯形由連續(xù)曲線(xiàn)實(shí)例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線(xiàn)ax?、bx?所圍成.一、問(wèn)題的提出)(xfy?ab
2024-09-03 12:42
【摘要】一、由邊際函數(shù)求原函數(shù)二、由變化率求總量第八節(jié)定積分的經(jīng)濟(jì)應(yīng)用三、收益流的現(xiàn)值和將來(lái)值一、由邊際函數(shù)求原函數(shù)25()7Cxx???0()(0)()dxCxCCxx????0251000(7)dxxx????例1已知邊際成本為,固
【摘要】一、定積分的元素法二、平面圖形的面積第七節(jié)定積分的幾何應(yīng)用三、旋轉(zhuǎn)體的體積四、平行截面面積已知的立體的體積五、小結(jié)回顧曲邊梯形求面積的問(wèn)題()dbaAfxx??一、定積分的元素法曲邊梯形由連續(xù)曲線(xiàn))(xfy?)0)((?xf、x軸與兩條直線(xiàn)ax?、bx?所圍
2024-08-24 16:42
【摘要】一、分部積分公式二、小結(jié)思考題第五節(jié)定積分的分部積分法設(shè)函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導(dǎo)數(shù),則有??ddbbbaaauvuvvu????.定積分的分部積分公式推導(dǎo)??,vuvuuv???????()d,bbaauvxuv?????d
【摘要】一、換元公式二、小結(jié)思考題第四節(jié)定積分的換元法定理假設(shè)(1))(xf在],[ba上連續(xù);(2)函數(shù))(tx??在],[??上是單值的且有連續(xù)導(dǎo)數(shù);(3)當(dāng)t在區(qū)間],[??上變化時(shí),)(tx??的值在],[ba上變化,且a?)(??、b?)(??,則
【摘要】abxyo??A曲邊梯形由連續(xù)曲線(xiàn)實(shí)例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線(xiàn)ax?、bx?所圍成.第五節(jié)定積分一、問(wèn)題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2024-08-02 11:11
【摘要】一、問(wèn)題的提出二、導(dǎo)數(shù)的定義四、函數(shù)可導(dǎo)性與連續(xù)性的關(guān)系五、小結(jié)思考題三、導(dǎo)數(shù)的幾何意義第一節(jié)導(dǎo)數(shù)概念一、問(wèn)題的提出0tt?,0時(shí)刻的瞬時(shí)速度求tt考慮最簡(jiǎn)單的變速直線(xiàn)運(yùn)動(dòng)--自由落體運(yùn)動(dòng),如圖,,0tt的時(shí)刻取一鄰近于,?運(yùn)動(dòng)時(shí)間ts???v平均速度
2024-09-03 12:41
【摘要】主要內(nèi)容典型例題第六章定積分及其應(yīng)用習(xí)題課(一)問(wèn)題1:曲邊梯形的面積問(wèn)題2:變速直線(xiàn)運(yùn)動(dòng)的路程存在定理廣義積分定積分定積分的性質(zhì)定積分的計(jì)算法牛頓-萊布尼茨公式()d()()bafxxFbFa??
【摘要】一、問(wèn)題的提出二、積分上限函數(shù)及其導(dǎo)數(shù)三、牛頓-萊布尼茨公式四、小結(jié)思考題第三節(jié)微積分基本公式變速直線(xiàn)運(yùn)動(dòng)中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線(xiàn)運(yùn)動(dòng)中路程為21()dTTvtt?設(shè)某物體作直線(xiàn)運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),且0)(?tv
2024-08-24 08:39
【摘要】calculus§定積分基本積分方法301sinsinxxdx???例:求32sinsinsinsinsincosxxxxxx????解:由于被積函數(shù)(1)一、直接積分法cossin,02cossin,2xxxxxx
2025-01-22 21:34
【摘要】回顧曲邊梯形求面積的問(wèn)題??badxxfA)(第八節(jié)定積分的幾何應(yīng)用曲邊梯形由連續(xù)曲線(xiàn))(xfy?)0)((?xf、x軸與兩條直線(xiàn)ax?、bx?所圍成。abxyo)(xfy?abxyo)(xfy?提示若用A?表示任一小區(qū)間],[xx
2025-04-26 04:48
【摘要】設(shè)函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導(dǎo)數(shù),則有????bababavduuvudv.定積分的分部積分公式推導(dǎo)??,vuvuuv?????,)(babauvdxuv???,??????bababadxvudxvuuv.?????bababavduuvud
2025-04-26 05:00
【摘要】第二講微積分基本公式?內(nèi)容提要1.變上限的定積分;-萊布尼茲公式。?教學(xué)要求;-萊布尼茲公式。?21)(TTdttv)()(12TsTs?一、變上限的定積分).()()(1221TsTsdttvTT????).()(tvts??其中一般地,若?
2025-05-19 01:35
【摘要】一、六個(gè)基本積分二、待定系數(shù)法舉例三、小結(jié)第四節(jié)有理函數(shù)的積分有理函數(shù)的定義:兩個(gè)多項(xiàng)式的商表示的函數(shù)稱(chēng)之為有理函數(shù).mmmmnnnnbxbxbxbaxaxaxaxQxP?????????????11101110)()(??其中m、n
2024-09-03 12:39
【摘要】第15講│定積分與微積分基本定理第15講定積分與微積分基本定理知識(shí)梳理第15講│知識(shí)梳理1.定積分的定義如果函數(shù)f(x)在區(qū)間[a,b]上連續(xù),用分點(diǎn)a=x0<x1<…<xi-1<xi<…<xn=b將區(qū)間[a,b]等分成
2024-11-15 06:00