【摘要】一、換元公式二、小結(jié)思考題第四節(jié)定積分的換元法定理假設(shè)(1))(xf在],[ba上連續(xù);(2)函數(shù))(tx??在],[??上是單值的且有連續(xù)導(dǎo)數(shù);(3)當t在區(qū)間],[??上變化時,)(tx??的值在],[ba上變化,且a?)(??、b?)(??,則
2025-08-16 16:42
【摘要】定理假設(shè)(1))(xf在],[ba上連續(xù);(2)函數(shù))(tx??在],[??上是單值的且有連續(xù)導(dǎo)數(shù);(3)當t在區(qū)間],[??上變化時,)(tx??的值在],[ba上變化,且a?)(??、b?)(??,則有dtttfdxxfba????????)()]([)(.第
2025-04-26 04:54
【摘要】一、由邊際函數(shù)求原函數(shù)二、由變化率求總量第八節(jié)定積分的經(jīng)濟應(yīng)用三、收益流的現(xiàn)值和將來值一、由邊際函數(shù)求原函數(shù)25()7Cxx???0()(0)()dxCxCCxx????0251000(7)dxxx????例1已知邊際成本為,固
2024-09-03 12:42
【摘要】一、問題的提出二、定積分的定義三、存在定理四、幾何意義五、小結(jié)思考題第一節(jié)定積分的概念abxyo??A曲邊梯形由連續(xù)曲線實例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.一、問題的提出)(xfy?ab
【摘要】定積分的換元法上一節(jié)我們建立了積分學(xué)兩類基本問題之間的聯(lián)系——微積分基本公式,利用這個公式計算定積分的關(guān)鍵是求出不定積分,而換元法和分部積分法是求不定積分的兩種基本方法,如果能把這兩種方法直接應(yīng)用到定積分的計算,相信定能使得定積分的計算簡化,下面我們就來建立定積分的換元積分公式和分部積分公式。先來看一個例子例1???
2025-05-19 01:35
【摘要】一、定積分的元素法二、平面圖形的面積第七節(jié)定積分的幾何應(yīng)用三、旋轉(zhuǎn)體的體積四、平行截面面積已知的立體的體積五、小結(jié)回顧曲邊梯形求面積的問題()dbaAfxx??一、定積分的元素法曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍
【摘要】定積分的換元法上一節(jié)我們建立了積分學(xué)兩類基本問題之間的聯(lián)系——微積分基本公式,利用這個公式計算定積分的關(guān)鍵是求出不定積分,而換元法和分部積分法是求不定積分的兩種基本方法,如果能把這兩種方法直接應(yīng)用到定積分的計算,相信定能使得定積分的計算簡化,下面我們就來建立定積分的換元積分公式和分部積分公式。先來看一個例子例1換元求不定積分令則
2025-05-02 00:13
【摘要】一、分部積分公式二、小結(jié)思考題第五節(jié)定積分的分部積分法設(shè)函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導(dǎo)數(shù),則有??ddbbbaaauvuvvu????.定積分的分部積分公式推導(dǎo)??,vuvuuv???????()d,bbaauvxuv?????d
【摘要】高等數(shù)學(xué)電子教案武漢科技學(xué)院數(shù)理系第三節(jié)定積分的換元法和分部積分法一定積分的換元法定理1設(shè)函數(shù)f(x)在[a,b]上連續(xù),且x=φ(t)滿足條件:(1)φ(t)在[α,β]上連續(xù)可微;(2)當t在[α,β]上變化時,x=φ(t)的值在[a
【摘要】積分換元法不定積分換元法定積分換元法聯(lián)系與區(qū)別實例分析定理1:(不定積分換元法),連續(xù)假設(shè))(xf單調(diào),連續(xù),函數(shù))(tx??如果,)(d)())((ctGtttf??????則有cxG???))((1?.)(1xt???并且存在反函數(shù)????tttfxxfd)())((d)(
2025-05-15 05:14
【摘要】abxyo??A曲邊梯形由連續(xù)曲線實例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2025-07-25 11:11
【摘要】2由牛頓——萊布尼茲公式,可以通過不定積分來計算定積分.一般是將定積分的計算截然分成兩步:先計算相應(yīng)的不定積分,然后再運用牛頓——萊布尼茲公式代值計算出定積分.這種作法相當麻煩,我們希望將不定積分的計算方法與牛頓——萊布尼茲公式有機地結(jié)合起來,構(gòu)成定積分自身的計算方法——定積分的換元法和定積
2025-01-22 14:34
【摘要】主要內(nèi)容典型例題第六章定積分及其應(yīng)用習(xí)題課(一)問題1:曲邊梯形的面積問題2:變速直線運動的路程存在定理廣義積分定積分定積分的性質(zhì)定積分的計算法牛頓-萊布尼茨公式()d()()bafxxFbFa??
【摘要】一、問題的提出二、積分上限函數(shù)及其導(dǎo)數(shù)三、牛頓-萊布尼茨公式四、小結(jié)思考題第三節(jié)微積分基本公式變速直線運動中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運動中路程為21()dTTvtt?設(shè)某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv
2025-08-16 08:39
【摘要】calculus§定積分基本積分方法301sinsinxxdx???例:求32sinsinsinsinsincosxxxxxx????解:由于被積函數(shù)(1)一、直接積分法cossin,02cossin,2xxxxxx
2025-01-22 21:34