【摘要】主要內(nèi)容典型例題第六章定積分及其應(yīng)用習(xí)題課(一)問題1:曲邊梯形的面積問題2:變速直線運(yùn)動(dòng)的路程存在定理廣義積分定積分定積分的性質(zhì)定積分的計(jì)算法牛頓-萊布尼茨公式()d()()bafxxFbFa??
2024-09-03 12:42
【摘要】一、由邊際函數(shù)求原函數(shù)二、由變化率求總量第八節(jié)定積分的經(jīng)濟(jì)應(yīng)用三、收益流的現(xiàn)值和將來值一、由邊際函數(shù)求原函數(shù)25()7Cxx???0()(0)()dxCxCCxx????0251000(7)dxxx????例1已知邊際成本為,固
【摘要】主要內(nèi)容典型例題第五章不定積分習(xí)題課積分法原函數(shù)選擇u有效方法基本積分表第一換元法第二換元法直接積分法分部積分法不定積分幾種特殊類型函數(shù)的積分一、主要內(nèi)
2024-08-24 11:12
【摘要】一、定積分的元素法二、平面圖形的面積第七節(jié)定積分的幾何應(yīng)用三、旋轉(zhuǎn)體的體積四、平行截面面積已知的立體的體積五、小結(jié)回顧曲邊梯形求面積的問題()dbaAfxx??一、定積分的元素法曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍
2024-08-24 16:42
【摘要】主要內(nèi)容典型例題習(xí)題課第二章極限(一)極限的概念(二)連續(xù)的概念一、主要內(nèi)容左右極限兩個(gè)重要極限求極限的常用方法無窮小的性質(zhì)極限存在的充要條件判定極限存在的準(zhǔn)則無窮小的比較極限的性質(zhì)數(shù)列極限函
2024-09-03 12:39
【摘要】一、問題的提出二、定積分的定義三、存在定理四、幾何意義五、小結(jié)思考題第一節(jié)定積分的概念abxyo??A曲邊梯形由連續(xù)曲線實(shí)例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.一、問題的提出)(xfy?ab
【摘要】主要內(nèi)容典型例題第十一章無窮級(jí)數(shù)習(xí)題課常數(shù)項(xiàng)級(jí)數(shù)函數(shù)項(xiàng)級(jí)數(shù)正項(xiàng)級(jí)數(shù)交錯(cuò)級(jí)數(shù)冪級(jí)數(shù)收斂半徑R泰勒展開式數(shù)或函數(shù)函數(shù)數(shù)一般項(xiàng)級(jí)數(shù)泰勒級(jí)數(shù)0)(?xRn為
【摘要】一、分部積分公式二、小結(jié)思考題第五節(jié)定積分的分部積分法設(shè)函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導(dǎo)數(shù),則有??ddbbbaaauvuvvu????.定積分的分部積分公式推導(dǎo)??,vuvuuv???????()d,bbaauvxuv?????d
【摘要】回顧曲邊梯形求面積的問題??badxxfA)(第八節(jié)定積分的幾何應(yīng)用曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成。abxyo)(xfy?abxyo)(xfy?提示若用A?表示任一小區(qū)間],[xx
2025-04-26 04:48
【摘要】主要內(nèi)容典型例題第三章導(dǎo)數(shù)與微分習(xí)題課求導(dǎo)法則基本公式導(dǎo)數(shù)xyx????0lim微分dyyx???關(guān)系ddddd()yyyyxyyoxx??????????高階導(dǎo)數(shù)一、
【摘要】主要內(nèi)容典型例題第四章中值定理與導(dǎo)數(shù)的應(yīng)用習(xí)題課洛必達(dá)法則Rolle定理Lagrange中值定理常用的泰勒公式型00,1,0??型???型??0型00型??Cauchy中值定理Taylor中值定理xxF?)()()(bfaf?0?n
2024-09-03 12:46
【摘要】一、全微分二、全微分在近似計(jì)算中的應(yīng)用三、小結(jié)思考題第三節(jié)全微分及其應(yīng)用),(),(yxfyxxf???xyxfx??),(),(),(yxfyyxf???yyxfy??),(二元函數(shù)對x和對y的偏微分(partialdifferential)二元函數(shù)對
2024-08-24 16:43
【摘要】abxyo??A曲邊梯形由連續(xù)曲線實(shí)例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2025-07-25 11:11
【摘要】一、換元公式二、小結(jié)思考題第四節(jié)定積分的換元法定理假設(shè)(1))(xf在],[ba上連續(xù);(2)函數(shù))(tx??在],[??上是單值的且有連續(xù)導(dǎo)數(shù);(3)當(dāng)t在區(qū)間],[??上變化時(shí),)(tx??的值在],[ba上變化,且a?)(??、b?)(??,則
【摘要】主要內(nèi)容典型例題第八章多元函數(shù)微分法及其應(yīng)用習(xí)題課平面點(diǎn)集和區(qū)域多元函數(shù)的極限多元函數(shù)連續(xù)的概念極限運(yùn)算多元連續(xù)函數(shù)的性質(zhì)多元函數(shù)概念一、主要內(nèi)容全微分的應(yīng)用高階偏導(dǎo)數(shù)隱函數(shù)求導(dǎo)法則復(fù)合函數(shù)求導(dǎo)法
2024-09-03 12:43