freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx大連備戰(zhàn)中考數(shù)學(xué)專題復(fù)習(xí)分類練習(xí)-二次函數(shù)綜合解答題(參考版)

2025-03-30 22:26本頁面
  

【正文】 ∴直線l是線段BD的垂直平分線.∴點D關(guān)于直線l的對稱點就是點B.∴點M就是直線DE與拋物線的交點.設(shè)直線DE的解析式為y=mx+n,∵D(,﹣4),E(,0),∴,解得.∴直線DE的解析式為.聯(lián)立,解得,.∴符合條件的點M有兩個,是(,﹣4)或(,).。﹣90176。.∴∠EGB=180176。(m24m+3)=m+3,解得m=2或m=3(舍),當(dāng)△BMN是等腰三角形時,m的值為,,1,2.點睛:本題考查了二次函數(shù)綜合題,解(1)的關(guān)鍵是待定系數(shù)法;解(2)的關(guān)鍵是利用面積的和差得出二次函數(shù),又利用了二次函數(shù)的性質(zhì),解(3)的關(guān)鍵是利用等腰三角形的定義得出關(guān)于m的方程,要分類討論,以防遺漏.14.在平面直角坐標系中,二次函數(shù)y=ax2+x+c的圖象經(jīng)過點C(0,2)和點D(4,﹣2).點E是直線y=﹣x+2與二次函數(shù)圖象在第一象限內(nèi)的交點.(1)求二次函數(shù)的解析式及點E的坐標.(2)如圖①,若點M是二次函數(shù)圖象上的點,且在直線CE的上方,連接MC,OE,ME.求四邊形COEM面積的最大值及此時點M的坐標.(3)如圖②,經(jīng)過A、B、C三點的圓交y軸于點F,求點F的坐標.【答案】(1)E(3,1);(2)S最大=,M坐標為(,3);(3)F坐標為(0,﹣).【解析】【分析】1)把C與D坐標代入二次函數(shù)解析式求出a與c的值,確定出二次函數(shù)解析式,與一次函數(shù)解析式聯(lián)立求出E坐標即可;(2)過M作MH垂直于x軸,與直線CE交于點H,四邊形COEM面積最大即為三角形CME面積最大,構(gòu)造出二次函數(shù)求出最大值,并求出此時M坐標即可;(3)令y=0,求出x的值,得出A與B坐標,由圓周角定理及相似的性質(zhì)得到三角形AOC與三角形BOF相似,由相似得比例求出OF的長,即可確定出F坐標.【詳解】(1)把C(0,2),D(4,﹣2)代入二次函數(shù)解析式得: ,解得: ,即二次函數(shù)解析式為y=﹣x2+x+2,聯(lián)立一次函數(shù)解析式得:,消去y得:﹣x+2=﹣x2+x+2,解得:x=0或x=3,則E(3,1);(2)如圖①,過M作MH∥y軸,交CE于點H,設(shè)M(m,﹣m2+m+2),則H(m,﹣m+2),∴MH=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m,S四邊形COEM=S△OCE+S△CME=23+MH?3=﹣m2+3m+3,當(dāng)m=﹣=時,S最大=,此時M坐標為(,3);(3)連接BF,如圖②所示,當(dāng)﹣x2+x+20=0時,x1=,x2=,∴OA=,OB=,∵∠ACO=∠ABF,∠AOC=∠FOB,∴△AOC∽△FOB,∴ ,即 ,解得:OF=,則F坐標為(0,﹣).【點睛】此題屬于二次函數(shù)綜合題,涉及的知識有:待定系數(shù)法求二次函數(shù)解析式,相似三角形的判定與性質(zhì),三角形的面積,二次函數(shù)圖象與性質(zhì),以及圖形與坐標性質(zhì),熟練掌握各自的性質(zhì)是解本題的關(guān)鍵.15.已知拋物線的頂點為點D,并與x軸相交于A、B兩點(點A在點B的左側(cè)),與y軸相交于點C.(1)求點A、B、C、D的坐標;(2)在y軸的正半軸上是否存在點P,使以點P、O、A為頂點的三角形與△AOC相似?若存在,求出點P的坐標;若不存在,請說明理由;(3)取點E(,0)和點F(0,),直線l經(jīng)過E、F兩點,點G是線段BD的中點.①點G是否在直線l上,請說明理由;②在拋物線上是否存在點M,使點M關(guān)于直線l的對稱點在x軸上?若存在,求出點M的坐標;若不存在,請說明理由.【答案】解:(1) D(,﹣4)(2) P(0,)或(0,)(3)詳見解析【解析】【分析】(1)令y=0,解關(guān)于x的一元二次方程求出A、B的坐標,令x=0求出點C的坐標,再根據(jù)頂點坐標公式計算即可求出頂點D的坐標.(2)根據(jù)點A、C的坐標求出OA、OC的長,再分OA和OA是對應(yīng)邊,OA和OC是對應(yīng)邊兩種情況,利用相似三角形對應(yīng)邊成比例列式求出OP的長,從而得解.(3)①設(shè)直線l的解析式為y=kx+b(k≠0),利用待定系數(shù)法求一次函數(shù)解析式求出直線l的解析式,再利用中點公式求出點G的坐標,然后根據(jù)直線上點的坐標特征驗證即可.②設(shè)拋物線的對稱軸與x軸交點為H,求出OE、OF、HD、HB的長,然后求出△OEF和△HDB相似,根據(jù)相似三角形對應(yīng)角相等求出∠OFE=∠HBD,然后求出EG⊥BD,從而得到直線l是線段BD的垂直平分線,根據(jù)線段垂直平分線的性質(zhì)點D關(guān)于直線l的對稱點就是B,從而判斷出點M就是直線DE與拋物線的交點.再設(shè)直線DE的解析式為y=mx+n,利用待定系數(shù)法求一次函數(shù)解析求出直線DE的解析式,然后與拋物線解析式聯(lián)立求解即可得到符合條件的點M.【詳解】解:(1)在中,令y=0,則,整理得,4x2﹣12x﹣7=0,解得x1=,x2=.∴A(,0),B(,0).在中,令x=0,則y=.∴C(0,).∵,∴頂點D(,﹣4).(2)在y軸正半軸上存在符合條件的點P.設(shè)點P的坐標為(0,y),∵A(,0),C(0,),∴OA=,OC=,OP=y,①若OA和OA是對應(yīng)邊,則△AOP∽△AOC,∴.∴y=OC=,此時點P(0,).②若OA和OC是對應(yīng)邊,則△POA∽△AOC,∴,即.解得y=,此時點P(0,).綜上所述,符合條件的點P有兩個,P(0,)或(0,).(3)①設(shè)直線l的解析式為y=kx+b(k≠0),∵直線l經(jīng)過點E(,0)和點F(0,),∴,解得,∴直線l的解析式為.∵B(,0),D(,﹣4),∴,∴線段BD的中點G的坐標為(,﹣2).當(dāng)x=時,∴點G在直線l上.②在拋物線上存在符合條件的點M.設(shè)拋物線的對稱軸與x軸交點為H,則點H的坐標為(,0),∵E(,0)、F(0,),B(,0)、D(,﹣4),∴OE=,OF=,HD=4,HB=﹣=2.∵,∠OEF=∠HDB,∴△OEF∽△HDB.∴∠OFE=∠HBD.∵∠OEF+∠OFE=90176。1時,函數(shù)y=(k≠0,k為常數(shù))的圖象上最少有4個“中國結(jié)”:(1,k)、(﹣1,﹣k)、(k,1)、(﹣k,﹣1),這與函數(shù)y=(k≠0,k為常數(shù))的圖象上有且只有兩個“中國結(jié)”矛盾,綜上可得,k=1時,函數(shù)y=(k≠0,k為常數(shù))的圖象上有且只有兩個“中國結(jié)”:(1,1)、(﹣﹣1);k=﹣1時,函數(shù)y=(k≠0,k為常數(shù))的圖象上有且只有兩個“中國結(jié)”:(1,﹣1)、(﹣1).(3)令(k2﹣3k+2)x2+(2k2﹣4k+1)x+k2﹣k=0,則[(k﹣1)x+k][(k﹣2)x+(k﹣1)]=0,∴∴,整理,可得x1x2+2x2+1=0,∴x2(x1+2)=﹣1,∵xx2都是整數(shù),∴或∴或①當(dāng)時,∵,∴k=;②當(dāng)時,∵,∴k=k﹣1,無解;綜上,可得k=,x1=﹣3,x2=1,y=(k2﹣3k+2)x2+(2k2﹣4k+1)x+k2﹣k=[()2﹣3+2]x2+[2()2﹣4+1]x+()2﹣=﹣x2﹣x+①當(dāng)x=﹣2時,y=﹣x2﹣x+=﹣(﹣2)2﹣(﹣2)+=②當(dāng)x=﹣1時,y=﹣x2﹣x+=﹣(﹣1)2﹣(﹣1)+=1③當(dāng)x=0時,y=,另外,該函數(shù)的圖象與x軸所圍成的平面圖形中x軸上的“中國結(jié)”有3個:(﹣2,0)、(﹣0)、(0,0).綜上,可得若二次函數(shù)y=(k2﹣3k+2)x2+(2k2﹣4k+1)x+k2﹣k(k為常數(shù))的圖象與x軸相交得到兩個不同的“中國結(jié)”,該函數(shù)的圖象與x軸所圍成的平面圖形中(含邊界),一共包含有6個“中國結(jié)”:(﹣3,0)、(﹣2,0)、(﹣1,0)(﹣1,1)、(0,0)、(1,0).考點:反比例函數(shù)綜合題11.如圖,某
點擊復(fù)制文檔內(nèi)容
規(guī)章制度相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1