freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

備戰(zhàn)中考數學—二次函數的綜合壓軸題專題復習含答案(參考版)

2025-03-31 23:07本頁面
  

【正文】 ∴∠OBP=∠FPG,連接EP,則EP⊥OG,∵BE=EF,∴EP是梯形的中位線,∴OP=PG=2,∵FG=1,tan∠FPG=tan∠OBP=,∴,∴m=﹣4,∴當﹣4≤m<0時,在線段OG上存在點P,使∠OBP=∠FPG;如圖3,當B在原點的右側時,要想滿足∠OBP=∠FPG,則∠OBP=∠OPB=∠FPG,∴OB=OP,∴△OBP是等腰直角三角形,△FPG也是等腰直角三角形,∴FG=PG=1,∴OB=OP=3,∴m=3,綜上所述,當﹣4≤m<0或m=3時,在線段OG上存在點P,使∠OBP=∠FPG.考點:二次函數的綜合題.。∴∠FPG+∠OPB=90176。∴,∴,即 ,∵,∴,∴P2(1,-4).綜上所述,以點A、D、P、Q為頂點的四邊形能成為矩形,點P的坐標為(1,)或(1,-4).考點:二次函數綜合題.15.拋物線y=x2+bx+c與x軸交于A(1,0),B(m,0),與y軸交于C.(1)若m=﹣3,求拋物線的解析式,并寫出拋物線的對稱軸;(2)如圖1,在(1)的條件下,設拋物線的對稱軸交x軸于D,在對稱軸左側的拋物線上有一點E,使S△ACE=S△ACD,求點E的坐標;(3)如圖2,設F(﹣1,﹣4),FG⊥y于G,在線段OG上是否存在點P,使∠OBP=∠FPG?若存在,求m的取值范圍;若不存在,請說明理由.【答案】(1)拋物線的解析式為:y=x2+2x﹣3=(x+1)2﹣4;對稱軸是:直線x=﹣1;(2)點E的坐標為E(﹣4,5)(3)當﹣4≤m<0或m=3時,在線段OG上存在點P,使∠OBP=∠FPG.【解析】試題分析:(1)利用待定系數法求二次函數的解析式,并配方求對稱軸;(2)如圖1,設E(m,m2+2m﹣3),先根據已知條件求S△ACE=10,根據不規(guī)則三角形面積等于鉛直高度與水平寬度的積列式可求得m的值,并根據在對稱軸左側的拋物線上有一點E,則點E的橫坐標小于﹣1,對m的值進行取舍,得到E的坐標;(3)分兩種情況:①當B在原點的左側時,構建輔助圓,根據直徑所對的圓周角是直角,只要滿足∠BPF=90176。AO=3,BO=2,Q(t,3),P(t,),①當2<t≤6時,AQ=t,PQ=,若:△AOB∽△AQP,則:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,則:,即:,∴t=0(舍)或t=2(舍),②當t>6時,AQ′=t,PQ′=,若:△AOB∽△AQP,則:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,則:,即:,∴t=0(舍)或t=14,∴t=或t=或t=14.考點:二次函數綜合題.14.(本小題滿分12分)如圖,在平面直角坐標系xOy中,拋物線()與x軸交于A,B兩點(點A在點B的左側),經過點A的直線l:與y軸負半軸交于點C,與拋物線的另一個交點為D,且CD=4AC.(1)直接寫出點A的坐標,并求直線l的函數表達式(其中k,b用含a的式子表示);(2)點E是直線l上方的拋物線上的動點,若△ACE的面積的最大值為,求a的值;(3)設P是拋物線的對稱軸上的一點,點Q在拋物線上,以點A,D,P,Q為頂點的四邊形能否成為矩形?若能,求出點P的坐標;若不能,請說明理由.【答案】(1)A(-1,0),;(2);(3)P的坐標為(1,)或(1,-4).【解析】試題分析:(1)在中,令y=0,得到,得到A(-1,0),B(3,0),由直線l經過點A,得到,故,令,即,由于CD=4AC,故點D的橫坐標為4,即有,得到,從而得出直線l的函數表達式;(2)過點E作EF∥y軸,交直線l于點F,設E(,),則F(,),EF==,S△ACE=S△AFE-S△CFE==,故△ACE的面積的最大值為,而△ACE的面積的最大值為,所以 ,解得;(3)令,即,解得,得到D(4,5a),因為拋物線的對稱軸為,設P(1,m),然后分兩種情況討論:①若AD是矩形的一條邊,②若AD是矩形的一條對角線.試題解析:(1)∵=,令y=0,得到,∴A(-1,0),B(3,0),∵直線l經過點A,∴,∴,令,即,∵CD=4AC,∴點D的橫坐標為4,∴,∴,∴直線l的函數表達式為;(2)過點E作EF∥y軸,交直線l于點F,設E(,),則F(,),EF==,S△ACE=S△AFE-S△CFE= ==,∴△ACE的面積的最大值為,∵△ACE的面積的最大值為,∴ ,解得;(3)令,即,解得,∴D(4,5a),∵,∴拋物線的對稱軸為,設P(1,m),①若AD是矩形的一條邊,則Q(-4,21a),m=21a+5a=26a,則P(1,26a),∵四邊形ADPQ為矩形,∴∠ADP=90176。;∴∠BAM=∠BAC+∠MAC=90176。;點M是拋物線的頂點,∴M點為(0,1)∴OA=OM=1,∵∠AOM=90176。進而得到△ABM是直角三角形;(3)根據拋物線的平以后的頂點設其解析式為,∵拋物線的不動點是拋物線與直線的交點,∴,方程總有實數根,則≥0,得到m的取值范圍即可試題解析:解:(1)∵點A是直線與軸的交點,∴A點為(1,0)∵點B在直線上,且橫坐標為2,∴B點為(2,3)∵過點A、B的拋物線的頂點M在軸上,故設其解析式為:∴,解得:∴拋物線的解析式為.(2)△ABM是直角三角形,且∠BAM=90176?!螧AC=45176?!螪CG=45176?!摺螦EM=90176?!唷螪MP=90176?!唷螹PD=∠BPE=45176?!嗨倪呅蜲NPE是矩形∴ON=PE=t∴NC=OC﹣ON=4﹣t∵MP∥CN∴△MPQ∽△NCQ∴ ∴ 解得:(點P不與點C重合,故舍去)∴t的值為 (3)∵∠PEB=90176。∵ME⊥x軸于點E,PB=t∴∠BEP=90176。進而得AE=ME,把含t的式子代入并解方程即可;③若MP=DP,則∠PMD=∠PDM,由對頂角相等和兩直線平行內錯角相等可得∠CFD=∠PMD=∠PDM=∠CDF進而得CF=CD.用t表示M的坐標,求直線AM解析式,求得AM與y軸交點F的坐標,即能用t表示CF的長.把直線AM與直線BC解析式聯立方程組,解得x的值即為點D橫坐標.過D作y軸垂線段DG,得等腰直角△CDG,用DG即點D橫坐標,進而可用t表示CD的長.把含t的式子代入CF=CD,解方程即得到t的值.【詳解】(1)直線y=﹣x+4中,當x=0時,y=4∴C(0,4)當y=﹣x+4=0時,解得:x=4∴B(4,0)∵拋物線y=﹣x2+bx+c經過B,C兩點∴ 解得:∴拋物線解析式為y=﹣x2+3x+4(2)∵B(4,0),C(0,4),∠BOC=90176。故有∠DMP=90176。 (3)滿足條件的點有兩個,其坐標分別為:(, ),(,).【解析】【分析】1)用待定系數法可得出拋物線的解析式,令y=2可得出點D的坐標(2)分兩種情況進行討論,①當AE為一邊時,AE∥PD,②當AE為對角線時,根據平行四邊形對頂點到另一條對角線距離相等,求解點P坐標(3)結合圖形可判斷出點P在直線CD下
點擊復制文檔內容
外語相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1