freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)壓軸題專題復(fù)習(xí)—二次函數(shù)的綜合及答案解析(參考版)

2025-03-30 22:25本頁面
  

【正文】 ∵∠OPB+∠OBP=90176。就可以構(gòu)成∠OBP=∠FPG,如圖2,求出圓E與y軸有一個交點時的m值,則可得取值范圍;②當(dāng)B在原點的右側(cè)時,只有△OBP是等腰直角三角形,△FPG也是等腰直角三角形時滿足條件,直接計算即可.試題解析:(1)當(dāng)m=﹣3時,B(﹣3,0),把A(1,0),B(﹣3,0)代入到拋物線y=x2+bx+c中得:,解得,∴拋物線的解析式為:y=x2+2x﹣3=(x+1)2﹣4;對稱軸是:直線x=﹣1;(2)如圖1,設(shè)E(m,m2+2m﹣3),由題意得:AD=1+1=2,OC=3,S△ACE=S△ACD=ADOC=23=10,設(shè)直線AE的解析式為:y=kx+b,把A(1,0)和E(m,m2+2m﹣3)代入得,解得:,∴直線AE的解析式為:y=(m+3)x﹣m﹣3,∴F(0,﹣m﹣3),∵C(0,﹣3),∴FC=﹣m﹣3+3=﹣m,∴S△ACE=FC(1﹣m)=10,﹣m(1﹣m)=20,m2﹣m﹣20=0,(m+4)(m﹣5)=0,m1=﹣4,m2=5(舍),∴E(﹣4,5);(3)如圖2,當(dāng)B在原點的左側(cè)時,連接BF,以BF為直徑作圓E,當(dāng)⊙E與y軸相切時,設(shè)切點為P,∴∠BPF=90176。FP=FB,∴△PNF≌△BEF(AAS),∴FN=FE=a,PN=EB=4﹣a,∴點P(2a,4),點H(2a,﹣4a2+6a+4),∵PH=2,即:﹣4a2+6a+4﹣4=|2|,解得:a=1或或或(舍去),故:點P的坐標(biāo)為(2,4)或(1,4)或(,4).【點睛】本題考查的是二次函數(shù)綜合運用,其中(2)、(3),要注意分類求解,避免遺漏.10.如圖,拋物線y=ax2+bx+c與x軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸l為x=﹣1.(1)求拋物線的解析式并寫出其頂點坐標(biāo);(2)若動點P在第二象限內(nèi)的拋物線上,動點N在對稱軸l上.①當(dāng)PA⊥NA,且PA=NA時,求此時點P的坐標(biāo);②當(dāng)四邊形PABC的面積最大時,求四邊形PABC面積的最大值及此時點P的坐標(biāo).【答案】(1)y=﹣(x+1)2+4,頂點坐標(biāo)為(﹣1,4);(2)①點P(﹣﹣1,2);②P(﹣ ,)【解析】試題分析:(1)將B、C的坐標(biāo)代入已知的拋物線的解析式,由對稱軸為即可得到拋物線的解析式;(2)①首先求得拋物線與x軸的交點坐標(biāo),然后根據(jù)已知條件得到PD=OA,從而得到方程求得x的值即可求得點P的坐標(biāo);②,表示出來得到二次函數(shù),求得最值即可.試題解析:(1)∵拋物線與x軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸l為,∴,解得:,∴二次函數(shù)的解析式為=,∴頂點坐標(biāo)為(﹣1,4);(2)令,解得或,∴點A(﹣3,0),B(1,0),作PD⊥x軸于點D,∵點P在上,∴設(shè)點P(x,),①∵PA⊥NA,且PA=NA,∴△PAD≌△AND,∴OA=PD,即,解得x=(舍去)或x=,∴點P(,2);②設(shè)P(x,y),則,∵=OB?OC+AD?PD+(PD+OC)?OD=====,∴當(dāng)x=時,=,當(dāng)x=時,=,此時P(,).考點:1.二次函數(shù)綜合題;2.二次函數(shù)的最值;3.最值問題;4.壓軸題.11.如圖甲,直線y=﹣x+3與x軸、y軸分別交于點B、點C,經(jīng)過B、C兩點的拋物線y=x2+bx+c與x軸的另一個交點為A,頂點為P.(1)求該拋物線的解析式;(2)在該拋物線的對稱軸上是否存在點M,使以C,P,M為頂點的三角形為等腰三角形?若存在,請直接寫出所符合條件的點M的坐標(biāo);若不存在,請說明理由;(3)當(dāng)0<x<3時,在拋物線上求一點E,使△CBE的面積有最大值(圖乙、丙供畫圖探究).【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E點坐標(biāo)為(,)時,△CBE的面積最大.【解析】試題分析:(1)由直線解析式可求得B、C坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)由拋物線解析式可求得P點坐標(biāo)及對稱軸,可設(shè)出M點坐標(biāo),表示出MC、MP和PC的長,分MC=MP、MC=PC和MP=PC三種情況,可分別得到關(guān)于M點坐標(biāo)的方程,可求得M點的坐標(biāo);(3)過E作EF⊥x軸,交直線BC于點F,交x軸于點D,可設(shè)出E點坐標(biāo),表示出F點的坐標(biāo),表示出EF的長,進一步可表示出△CBE的面積,利用二次函數(shù)的性質(zhì)可求得其取得最大值時E點的坐標(biāo).試題解析:(1)∵直線y=﹣x+3與x軸、y軸分別交于點B、點C,∴B(3,0),C(0,3),把B、C坐標(biāo)代入拋物線解析式可得,解得,∴拋物線解析式為y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴拋物線對稱軸為x=2,P(2,﹣1),設(shè)M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM為等腰三角形,∴有MC=MP、MC=PC和MP=PC三種情況,①當(dāng)MC=MP時,則有=|t+1|,解得t=,此時M(2,);②當(dāng)MC=PC時,則有=2,解得t=﹣1(與P點重合,舍去)或t=7,此時M(2,7);③當(dāng)MP=PC時,則有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此時M(2,﹣1+2)或(2,﹣1﹣2);綜上可知存在滿足條件的點M,其坐標(biāo)為(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如圖,過E作EF⊥x軸,交BC于點F,交x軸于點D,設(shè)E(x,x2﹣4x+3),則F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF?OD+EF?BD=EF?OB=3(﹣x2+3x)=﹣(x﹣)2+,∴當(dāng)x=時,△CBE的面積最大,此時E點坐標(biāo)為(,),即當(dāng)E點坐標(biāo)為(,)時,△CBE的面積最大.考點:二次函數(shù)綜合題.12.(14分)如圖,在平面直角坐標(biāo)系中,拋物線y=mx2﹣8mx+4m+2(m>2)與y軸的交點為A,與x軸的交點分別為B(x1,0),C(x2,0),且x2﹣x1=4,直線AD∥x軸,在x軸上有一動點E(t,0)過點E作平行于y軸的直線l與拋物線、直線AD的交點分別為P、Q.(1)求拋物線的解析式;(2)當(dāng)0<t≤8時,求△APC面積的最大值;(3)當(dāng)t>2時,是否存在點P,使以A、P、Q為頂點的三角形與△AOB相似?若存在,求出此時t的值;若不存在,請說明理由.【答案】(1);(2)12;(3)t=或t=或t=14.【解析】試題分析:(1)首先利用根與系數(shù)的關(guān)系得出:,結(jié)合條件求出的值,然后把點B,C的坐標(biāo)代入解析式計算即可;(2)(2)分0<t<6時和6≤t≤8時兩種情況進行討論,據(jù)此即可求出三角形的最大值;(3)(3)分2<t≤6時和t>6時兩種情況進行討論,再根據(jù)三角形相似的條件,即可得解.試題解析:解:(1)由題意知xx2是方程mx2﹣8mx+4m+2=0的兩根,∴x1+x2=8,由.解得:.∴B(2,0)、C(6,0)則4m﹣16m+4m+2=0,解得:m=,∴該拋物線解析式為:y=;.(2)可求得A(0,3)設(shè)直線AC的解析式為:y=kx+b,∵∴∴直線AC的解析式為:y=﹣x+3,要構(gòu)成△APC,顯然t≠6,分兩種情況討論:當(dāng)0<t<6時,設(shè)直線l與AC交點為F,則:F(t,﹣),∵P(t,),∴PF=,∴S△APC=S△APF+S△CPF===,此時最大值為:,②當(dāng)6≤t≤8時,設(shè)直線l與AC交點為M,則:M(t,﹣),∵
點擊復(fù)制文檔內(nèi)容
法律信息相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1