freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)專題復(fù)習(xí)分類練習(xí)-二次函數(shù)綜合解答題附答案解析(參考版)

2025-03-30 22:25本頁面
  

【正文】 及∠ANM=90176?!啵?,即 ,∵,∴,∴P2(1,-4).綜上所述,以點A、D、P、Q為頂點的四邊形能成為矩形,點P的坐標為(1,)或(1,-4).考點:二次函數(shù)綜合題.13.如圖,已知二次函數(shù)y=ax2+bx+3 的圖象與x軸分別交于A(1,0),B(3,0)兩點,與y軸交于點C(1)求此二次函數(shù)解析式;(2)點D為拋物線的頂點,試判斷△BCD的形狀,并說明理由;(3)將直線BC向上平移t(t0)個單位,平移后的直線與拋物線交于M,N兩點(點M在y軸的右側(cè)),當△AMN為直角三角形時,求t的值.【答案】(1);(2)△BCD為直角三角形,理由見解析;(3)當△AMN為直角三角形時,t的值為1或4.【解析】【分析】(1)根據(jù)點A、B的坐標,利用待定系數(shù)法即可求出二次函數(shù)解析式;(2)利用配方法及二次函數(shù)圖象上點的坐標特征,可求出點C、D的坐標,利用兩點間的距離公式可求出CD、BD、BC的長,由勾股定理的逆定理可證出△BCD為直角三角形;(3)根據(jù)點B、C的坐標,利用待定系數(shù)法可求出直線BC的解析式,進而可找出平移后直線的解析式,聯(lián)立兩函數(shù)解析式成方程組,通過解方程組可找出點M、N的坐標,利用兩點間的距離公式可求出AMANMN2的值,分別令三個角為直角,利用勾股定理可得出關(guān)于t的無理方程,解之即可得出結(jié)論.【詳解】(1)將、代入,得:,解得:,此二次函數(shù)解析式為.(2)為直角三角形,理由如下:,頂點的坐標為.當時,點的坐標為.點的坐標為,,.,為直角三角形.(3)設(shè)直線的解析式為,將,代入,得:,解得:,直線的解析式為,將直線向上平移個單位得到的直線的解析式為.聯(lián)立新直線與拋物線的解析式成方程組,得:,解得:,點的坐標為,點的坐標為,.點的坐標為,.為直角三角形,分三種情況考慮:①當時,有,即,整理,得:,解得:,(不合題意,舍去);②當時,有,即,整理,得:,解得:,(不合題意,舍去);③當時,有,即,整理,得:.,該方程無解(或解均為增解).綜上所述:當為直角三角形時,的值為1或4.【點睛】本題考查了待定系數(shù)法求二次函數(shù)解析式、待定系數(shù)法求一次函數(shù)解析式、二次函數(shù)圖象上點的坐標特征、勾股定理以及勾股定理的逆定理,解題的關(guān)鍵是:(1)根據(jù)點的坐標,利用待定系數(shù)法求出二次函數(shù)解析式;(2)利用兩點間的距離公式結(jié)合勾股定理的逆定理找出BC2+BD2=CD2;(3)分∠MAN=90176。∴△ABM是直角三角形.(3)將拋物線的頂點平移至點(,),則其解析式為.∵拋物線的不動點是拋物線與直線的交點,∴化簡得:∴==當時,方程總有實數(shù)根,即平移后的拋物線總有不動點∴.考點:二次函數(shù)的綜合應(yīng)用(待定系數(shù)法;直角三角形的判定;一元二次方程根的判別式)12.(本小題滿分12分)如圖,在平面直角坐標系xOy中,拋物線()與x軸交于A,B兩點(點A在點B的左側(cè)),經(jīng)過點A的直線l:與y軸負半軸交于點C,與拋物線的另一個交點為D,且CD=4AC.(1)直接寫出點A的坐標,并求直線l的函數(shù)表達式(其中k,b用含a的式子表示);(2)點E是直線l上方的拋物線上的動點,若△ACE的面積的最大值為,求a的值;(3)設(shè)P是拋物線的對稱軸上的一點,點Q在拋物線上,以點A,D,P,Q為頂點的四邊形能否成為矩形?若能,求出點P的坐標;若不能,請說明理由.【答案】(1)A(-1,0),;(2);(3)P的坐標為(1,)或(1,-4).【解析】試題分析:(1)在中,令y=0,得到,得到A(-1,0),B(3,0),由直線l經(jīng)過點A,得到,故,令,即,由于CD=4AC,故點D的橫坐標為4,即有,得到,從而得出直線l的函數(shù)表達式;(2)過點E作EF∥y軸,交直線l于點F,設(shè)E(,),則F(,),EF==,S△ACE=S△AFE-S△CFE==,故△ACE的面積的最大值為,而△ACE的面積的最大值為,所以 ,解得;(3)令,即,解得,得到D(4,5a),因為拋物線的對稱軸為,設(shè)P(1,m),然后分兩種情況討論:①若AD是矩形的一條邊,②若AD是矩形的一條對角線.試題解析:(1)∵=,令y=0,得到,∴A(-1,0),B(3,0),∵直線l經(jīng)過點A,∴,∴,令,即,∵CD=4AC,∴點D的橫坐標為4,∴,∴,∴直線l的函數(shù)表達式為;(2)過點E作EF∥y軸,交直線l于點F,設(shè)E(,),則F(,),EF==,S△ACE=S△AFE-S△CFE= ==,∴△ACE的面積的最大值為,∵△ACE的面積的最大值為,∴ ,解得;(3)令,即,解得,∴D(4,5a),∵,∴拋物線的對稱軸為,設(shè)P(1,m),①若AD是矩形的一條邊,則Q(-4,21a),m=21a+5a=26a,則P(1,26a),∵四邊形ADPQ為矩形,∴∠ADP=90176?!唷螹AC=45176。.理由如下:作BC⊥軸于點C,∵A(1,0)、B(2,3)∴AC=BC=3,∴∠BAC=45176。得到∠BAM=90176?!唷螾AQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴,即,即t2﹣t﹣1=0,解得t=或t=<﹣(舍去),綜上可知存在滿足條件的點P,t的值為1或.考點:二次函數(shù)綜合題10.如圖甲,直線y=﹣x+3與x軸、y軸分別交于點B、點C,經(jīng)過B、C兩點的拋物線y=x2+bx+c與x軸的另一個交點為A,頂點為P.(1)求該拋物線的解析式;(2)在該拋物線的對稱軸上是否存在點M,使以C,P,M為頂點的三角形為等腰三角形?若存在,請直接寫出所符合條件的點M的坐標;若不存在,請說明理由;(3)當0<x<3時,在拋物線上求一點E,使△CBE的面積有最大值(圖乙、丙供畫圖探究).【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E點坐標為(,)時,△CBE的面積最大.【解析】試題分析:(1)由直線解析式可求得B、C坐標,利用待定系數(shù)法可求得拋物線解析式;(2)由拋物線解析式可求得P點坐標及對稱軸,可設(shè)出M點坐標,表示出MC、MP和PC的長,分MC=MP、MC=PC和MP=PC三種情況,可分別得到關(guān)于M點坐標的方程,可求得M點的坐標;(3)過E作EF⊥x軸,交直線BC于點F,交x軸于點D,可設(shè)出E點坐標,表示出F點的坐標,表示出EF的長,進一步可表示出△CBE的面積,利用二次函數(shù)的性質(zhì)可求得其取得最大值時E點的坐標.試題解析:(1)∵直線y=﹣x+3與x軸、y軸分別交于點B、點C,∴B(3,0),C(0,3),把B、C坐標代入拋物線解析式可得,解得,∴拋物線解析式為y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴拋物線對稱軸為x=2,P(2,﹣1),設(shè)M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM為等腰三角形,∴有MC=MP、MC=PC和MP=PC三種情況,①當MC=MP時,則有=|t+1|,解得t=,此時M(2,);②當MC=PC時,則有=2,解得t=﹣1(與P點重合,舍去)或t=7,此時M(2,7);③當MP=PC時,則有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此時M(2,﹣1+2)或(2
點擊復(fù)制文檔內(nèi)容
小學(xué)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1