【總結】題型專項(八)方程、不等式、函數(shù)的實際應用題本專題主要是對方程(組)應用和利用不等式以及函數(shù)進行方案設計的鞏固和深化.解決這類題型時,我們需要認真審題,根據(jù)實際問題找出題目的已知條件并設出相應的未知數(shù),充分利用“倍數(shù)”“是”“比”“多”“少”“共”等關鍵詞找出等量關系,列出方程或函數(shù)關系式,利用“不超過”“不低于”“不少于”等關鍵詞找出不等關系,利用函數(shù)的性質進行方
2025-01-09 10:43
【總結】.第九章不等式與不等式組測試1不等式及其解集學習要求:知道不等式的意義;知道不等式的解集的含義;會在數(shù)軸上表示解集.(一)課堂學習檢測一、填空題:1.用“<”或“>”填空:⑴4______-6;(2)-3______0;(3)-5______-1;(4)6+2______5+2;(5)6+(-2)______5+(-2);(6)6
2025-06-24 19:20
【總結】不等式、方程與函數(shù)1.若不等式組有解,則a的取值范圍是()A.a≤3B.a<3C.a<2D.a≤22.若關于x的分式方程無解,則m的值為()A.B.1C.D.3.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法錯誤的是()A.圖象關于直線x=1對稱
2025-06-24 01:44
【總結】......不等式與線性規(guī)劃考情解讀 (1)在高考中主要考查利用不等式的性質進行兩數(shù)的大小比較、一元二次不等式的解法、基本不等式及線性規(guī)劃問題.基本不等式主要考查求最值問題,線性規(guī)劃主要考查直接求最優(yōu)解和已知最優(yōu)解求參數(shù)
2024-08-11 23:12
【總結】問題;國貿大廈準備在元旦期間舉行商品大酬賓銷售活動.準備分兩次降價后再銷售,設計三種方案:8折,第二次再7折后銷售;7折,第二次再8折后銷售;.請問哪一種方案降價最少?不等式在實際問題中的應用汽車在實際行駛中,由于慣性作用,剎車后還要繼續(xù)往前滑行一段距離才能停住,我們稱這段距離為“剎車距
2024-11-07 02:27
【總結】解不等式方程的方法:(1)設:弄清題意和題目中的數(shù)量關系,用字母(x、y)表示題目中的未知數(shù);(2)找:找到能夠表示應用題全部含義的一個不等的關系;(3)列:根據(jù)這個不等的數(shù)量關系,列出所需的代數(shù)式,從而列出不等式(組);(4)解:解這個所列出的不等式(組),求出未知數(shù)的解集;(5)答:寫出答案,出售時標價為1200元,后來由于商品積壓,商店準備打折出售但要保持利
2024-08-26 07:18
【總結】指數(shù)不等式、對數(shù)不等式的解法·例題?例5-3-7?解不等式:解?(1)原不等式可化為x2-2x-1<2(指數(shù)函數(shù)的單調性)x2-2x-3<0(x+1)(x-3)<0所以原不等式的解為-1<x<3。(2)原不等式可化為注?函數(shù)的單調性是解指數(shù)不等式、對數(shù)不等式的重要依據(jù)。例5-
2025-06-25 01:24
【總結】第一篇:均值不等式應用 均值不等式應用 一.均值不等式 22a+b1.(1)若a,b?R,則a+b32ab(2)若a,b?R,則ab£a=b時取“=”)22 22.(1)若a,b?R*,則a+...
2024-11-05 18:14
【總結】含絕對值的不等式的解法一、基本解法與思想解含絕對值的不等式的基本思想是等價轉化,即采用正確的方法去掉絕對值符號轉化為不含絕對值的不等式來解,常用的方法有公式法、定義法、平方法。(一)、公式法:即利用與的解集求解。主要知識: 1、絕對值的幾何意義:是指數(shù)軸上點到原點的距離;是指數(shù)軸上,兩點間的距離.。2、與型的不等式的解法。當時,不等式的解集是不等式的解集是
2025-06-19 08:29
【總結】均值不等式應用(技巧)一.均值不等式1.(1)若,則(2)若,則(當且僅當時取“=”)2.(1)若,則(2)若,則(當且僅當時取“=”)(3)若,則(當且僅當時取“=”),則(當且僅當時取“=”);若,則(當且僅當時取“=”)若,則(當且僅當時取“=”),則(當且僅當時取“=”)若,則(當且僅當時取“=”),則(當且僅當時取“=”
2024-08-01 23:59
【總結】第二十二講不等式的應用100件某種商店,為使這批貨物盡快脫手,該商店采取了如下銷售方案,先將價格提高到原來的,再作三次降價處理:第一次降價30%,標出“虧本價”;第二次降價30%,標出“破產價”第三次降價30%,標出“跳樓價”.三次降價處理銷售結果如下表:降價次數(shù)一二三銷售件數(shù)1040一搶而光
2024-11-19 12:04
【總結】柯西不等式的應用技巧324100浙江省江山中學楊作義(手機:13735055298;郵箱:yzy6118@)普通高中課程標準實驗教科書數(shù)學選修4—5《不等式選講》安排了“柯西不等式”的內容,它是我省高考的選考內容之一.柯西不等式的一般形式是:設,則當且僅當或時等號成立.其結構對稱,形式優(yōu)美,應用極為廣泛,特別在證明不等式和求函數(shù)的最值中作用極大.應用時往往
2025-06-23 14:32
【總結】1.不等式的定義:若baba????0baba????0baba????0;;.2.不等式的性質:推論:若a>b,且c>d,則a+cb+d(同向,可加性)(1)(對稱性)abba???(2)
2025-01-20 01:36
2024-08-02 19:51
【總結】基本不等式的綜合應用基本不等式是人教版高中數(shù)學必修5第三章第四節(jié)的內容,在高考中占有很重要的比重。而同學們在使用基本不等式的過程中往往會遇到各種各樣的題型而覺得無從入手?,F(xiàn)結合教學中實際遇到的問題,淺談利用基本不等式求最值的各類題型的處理方法。題型一:直接利用基本不等式求最值理論依據(jù):(1)當且時,,當且僅當時等號成立,簡記為“和定積最大”(2)當且時,,當且僅當時等號成立,簡
2024-08-01 12:30