【總結(jié)】均值不等式應(yīng)用(技巧)一.均值不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)(3)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”);若,則(當(dāng)且僅當(dāng)時取“=”)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”
2024-08-01 23:59
【總結(jié)】第二十二講不等式的應(yīng)用100件某種商店,為使這批貨物盡快脫手,該商店采取了如下銷售方案,先將價格提高到原來的,再作三次降價處理:第一次降價30%,標(biāo)出“虧本價”;第二次降價30%,標(biāo)出“破產(chǎn)價”第三次降價30%,標(biāo)出“跳樓價”.三次降價處理銷售結(jié)果如下表:降價次數(shù)一二三銷售件數(shù)1040一搶而光
2024-11-19 12:04
【總結(jié)】柯西不等式的應(yīng)用技巧324100浙江省江山中學(xué)楊作義(手機(jī):13735055298;郵箱:yzy6118@)普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)選修4—5《不等式選講》安排了“柯西不等式”的內(nèi)容,它是我省高考的選考內(nèi)容之一.柯西不等式的一般形式是:設(shè),則當(dāng)且僅當(dāng)或時等號成立.其結(jié)構(gòu)對稱,形式優(yōu)美,應(yīng)用極為廣泛,特別在證明不等式和求函數(shù)的最值中作用極大.應(yīng)用時往往
2025-06-23 14:32
【總結(jié)】1.不等式的定義:若baba????0baba????0baba????0;;.2.不等式的性質(zhì):推論:若a>b,且c>d,則a+cb+d(同向,可加性)(1)(對稱性)abba???(2)
2025-01-20 01:36
2024-08-02 19:51
【總結(jié)】基本不等式的綜合應(yīng)用基本不等式是人教版高中數(shù)學(xué)必修5第三章第四節(jié)的內(nèi)容,在高考中占有很重要的比重。而同學(xué)們在使用基本不等式的過程中往往會遇到各種各樣的題型而覺得無從入手?,F(xiàn)結(jié)合教學(xué)中實際遇到的問題,淺談利用基本不等式求最值的各類題型的處理方法。題型一:直接利用基本不等式求最值理論依據(jù):(1)當(dāng)且時,,當(dāng)且僅當(dāng)時等號成立,簡記為“和定積最大”(2)當(dāng)且時,,當(dāng)且僅當(dāng)時等號成立,簡
2024-08-01 12:30
【總結(jié)】經(jīng)典例題透析類型一:利用柯西不等式求最值 1.求函數(shù)的最大值. 思路點撥:利用不等式解決最值問題,通常設(shè)法在不等式一邊得到一個常數(shù),并尋找不等式取等號的條件.這個函數(shù)的解析式是兩部分的和,若能化為ac+bd的形式就能利用柯西不等式求其最大值.也可以利用導(dǎo)數(shù)求解。 解析: 法一:∵且, ∴函數(shù)的定義域為,且, 當(dāng)且僅當(dāng)時,等號
2025-03-25 04:42
【總結(jié)】均值不等式總結(jié)及應(yīng)用1.(1)若,則 (2)若,則 (當(dāng)且僅當(dāng)時取“=”)2.(1)若,則 (2)若,則(當(dāng)且僅當(dāng)時取“=”)(3)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”)若,則(當(dāng)且僅當(dāng)時取“=”)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”)若,則(當(dāng)且僅當(dāng)時取“=”),則
2025-06-17 15:53
【總結(jié)】不等式組應(yīng)用題及答案1.如圖是用矩形厚紙片(厚度不計)做長方體包裝盒的示意圖,陰影部分是裁剪掉的部分.沿圖中實線折疊做成的長方體紙盒的上下底面是正方形,有三處矩形形狀的“舌頭”用來折疊后粘貼或封蓋.(1)若用長31cm,寬26cm的矩形厚紙片,恰好能做成一個符合要求的包裝盒,,三處“舌頭”的寬度相等.求“舌頭”的寬度和紙盒的高度;(2)?)現(xiàn)有一張40cm
2025-06-24 19:20
【總結(jié)】不等式與不等式組測試姓名__________學(xué)號____一、選擇題(每題4分,共32分)1.不等式axb?的解集是bxa?,那么a的取值范圍是???????()A.0a?B.0a?C.0a?D.0a?2.不等式2135xx???的正整數(shù)解的個數(shù)是??
2024-11-11 04:58
【總結(jié)】滾動小專題(三) 方程、不等式的實際應(yīng)用1.(2016·益陽)某職業(yè)高中機(jī)電班共有學(xué)生42人,其中男生人數(shù)比女生人數(shù)的2倍少3人.(1)該班男生和女生各有多少人?(2)某工廠決定到該班招錄30名學(xué)生,經(jīng)測試,該班男、女生每天能加工的零件數(shù)分別為50個和45個,為保證他們每天加工的零件總數(shù)不少于1460個,那么至少要招錄多少名男學(xué)生?解:(1)設(shè)該班女生有x人,則男生有
2025-01-14 10:57
【總結(jié)】《不等式的解集》測試卷ABCA卷:基礎(chǔ)題一、選擇題1.下面說法正確的是()A.x=3是不等式2x3的一個解B.x=3是不等式2x3的解集C.x=3是不等式2x3的唯一解D.x=3不是不等式2x3的解2.在數(shù)軸上表示x-3的解集,下圖中表示正確的是()3.如圖,數(shù)軸上表示的數(shù)的范
2025-06-07 13:51
【總結(jié)】.......初二數(shù)學(xué)不等式解下列不等式:(1)x-17<-5;(2)>-3;(3)>11;(4)>.(5)3x+1>
2025-03-25 07:46
【總結(jié)】不等式和不等式組錢旭東淮安市啟明外國語學(xué)校蘇科版義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書九年級復(fù)習(xí)課回顧·知識一元一次不等式(組)的應(yīng)用一元一次不等式(組)的解法一元一次不等式(組)解集的含義一元一次不等式(組)的概念不等式的性質(zhì)一元一次不等式和一元一次不等式組回顧·知識:含
2024-10-12 13:38
【總結(jié)】第一篇:不等式證明,均值不等式 1、設(shè)a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2024-11-03 17:10