【總結(jié)】1.不等式的定義:若baba????0baba????0baba????0;;.2.不等式的性質(zhì):推論:若a>b,且c>d,則a+cb+d(同向,可加性)(1)(對稱性)abba???(2)
2025-07-24 19:51
【總結(jié)】第八講不等式與不等式組一、知識網(wǎng)絡(luò)結(jié)構(gòu)圖二、考點精析考點一:不等式基本性質(zhì)運用1.由x0D.a2,則a的取值范圍是( ?。〢.a(chǎn)0B.aC.a&l
2025-04-16 12:51
【總結(jié)】《PK中考·數(shù)學》江西專版
2025-06-12 06:44
【總結(jié)】不等式與不等式組專題復(fù)習(一)不等式考點1:不等式的定義知識點::用符號“<”“>”“≤”“≥”表示大小關(guān)系的式子叫做不等式。(像a+2≠a-2這樣用“≠”號表示不等關(guān)系的式子也是不等式。):①x是正數(shù),則x>0;②x是負數(shù),則x<0;③x是非負數(shù),則x≥0;④x是非正數(shù),則x≤0;⑤x大于y,則x-y>0;⑥x小于y,則x-y<0;
【總結(jié)】不等式的文字應(yīng)用制作人:黃宇寧知識復(fù)習不等式的基本性質(zhì):⑴不等式的兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號方向不變.即:如果ab,那么a+cb+c,a-cb-c;⑵不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變.即:如果a&g
2025-05-05 18:36
【總結(jié)】不等式的性質(zhì)不等式不等式的證明不等式的解法應(yīng)用不等式的性質(zhì)互逆性—ab傳遞性—ab,bc可加性—ab推論移項法則—a+cb同向可加—ab,cd可乘性—ab,推論同向正
2025-10-10 08:39
【總結(jié)】不等式的性質(zhì)(復(fù)習課)一、基礎(chǔ)知識1、兩個數(shù)的大小關(guān)系a>ba-b>0a<ba-b<0a=ba-b=02、比較兩個數(shù)的大小的方法作差變形判斷符號得出結(jié)論3、作
2025-08-05 19:30
【總結(jié)】一、常見不等式1、一元一次不等式的法2、絕對值不等式x<-a或x>a-a<x<a|x|<a(a>0)|x|>a(a>0)ax>b或ax<b3、一元二次不等式的解法ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0)
2024-11-06 13:39
2024-11-07 02:27
【總結(jié)】立足教育開創(chuàng)未來·高中總復(fù)習(第一輪)·理科數(shù)學·全國版1第六章不等式第講立足教育開創(chuàng)未來·高中總復(fù)習(第一輪)·理科數(shù)學·全國版2考點搜索●應(yīng)用均值不等式求最值●應(yīng)用不等式求范圍●不等式
2025-08-20 08:58
2025-06-15 01:47
【總結(jié)】不等式和不等式組錢旭東淮安市啟明外國語學校蘇科版義務(wù)教育課程標準實驗教科書九年級復(fù)習課回顧·知識一元一次不等式(組)的應(yīng)用一元一次不等式(組)的解法一元一次不等式(組)解集的含義一元一次不等式(組)的概念不等式的性質(zhì)一元一次不等式和一元一次不等式組回顧·知識:含
2025-10-03 13:38
【總結(jié)】不等式的應(yīng)用高三備課組一、內(nèi)容歸納1知識精講:在前面幾節(jié)課學習的不等式的性質(zhì)、證明和解不等式的基礎(chǔ)上運用不等式的的知識和思想方法分析、解決一些涉及不等式關(guān)系的問題.2重點難點:善于將一個表面上看來并非是不等式的問題借助不等式的有關(guān)部門知識來解決.3思維方式:合理轉(zhuǎn)化;正
2024-11-09 08:50
【總結(jié)】§不等式的實際應(yīng)用哪一種更合算呢請問選擇移動還是聯(lián)通?若老王每月本地電話通話時間約為120分鐘,長途電話60分鐘,請幫他選擇一種最合算的手機卡老王購買了一部手機,預(yù)使用中國移動“神州行”卡或加入聯(lián)通的130網(wǎng),經(jīng)調(diào)查其收費標準見下表:網(wǎng)絡(luò)月租費本地話費長途話費聯(lián)
2025-09-20 19:11
【總結(jié)】教學目標:,一元二次及可化為一元一次或二次的分式及高次不等式一.含絕對值的不等式的解法|x|a(a0)1、利用公式性質(zhì):2、兩邊平方:(兩邊都是正數(shù))3、利用幾何意義:4、零點分段討論:例4:|x-2|+|2x+1|5析:①x-②