freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

初中數(shù)學(xué)課件精選(5篇)-資料下載頁

2024-12-06 06:54本頁面
  

【正文】 內(nèi)容的始終?! W(xué)習(xí)對(duì)象實(shí)數(shù)概念及其運(yùn)算;學(xué)習(xí)過程通過拼圖活動(dòng)引進(jìn)無理數(shù),通過具體問題的解決說明如何表示無理數(shù),進(jìn)而建立實(shí)數(shù)概念;以類比,歸納探索的方式,尋求實(shí)數(shù)的運(yùn)算法則;學(xué)習(xí)方式操作、猜測(cè)、抽象、驗(yàn)證、類比、推理等?! 【唧w過程:首先通過拼圖活動(dòng)和計(jì)算器探索活動(dòng),給出無理數(shù)的概念,然后通過具體問題的解決,引入平方根和立方根的概念和開方運(yùn)算?! ∽詈蠼炭茣偨Y(jié)實(shí)數(shù)的概念及其分類,并用類比的方法引入實(shí)數(shù)的相關(guān)概念、運(yùn)算律和運(yùn)算性質(zhì)等?! 〉谝还?jié):數(shù)怎么又不夠用了:通過拼圖活動(dòng),讓學(xué)生感受無理數(shù)產(chǎn)生的實(shí)際背景和引入的必要性;借助計(jì)算器探索無理數(shù)是無限不循環(huán)小數(shù),并從中體會(huì)無限逼近的思想;會(huì)判斷一個(gè)數(shù)是有理數(shù)還是無理數(shù)?! 〉诙?、三節(jié):平方根、立方根:如何表示正方形的邊長?它的值到底是多少?并引入算術(shù)平方根、平方根、立方根等概念和開方運(yùn)算?! 〉谒墓?jié):公園有多寬:在實(shí)際生活和生產(chǎn)實(shí)際中,對(duì)于無理數(shù)我們常常通過估算來求它的近似值,為此這一節(jié)內(nèi)容介紹估算的方法,包括通過估算比較大小,檢驗(yàn)計(jì)算結(jié)果的合理性等,其目的是發(fā)展學(xué)生的數(shù)感?! 〉谖骞?jié):用計(jì)算器開方:會(huì)用計(jì)算器求平方根和立方根?! 〗?jīng)歷運(yùn)用計(jì)算器探求數(shù)學(xué)規(guī)律的活動(dòng),發(fā)展合情推理的能力?! 〉诹?jié):實(shí)數(shù)?! 】偨Y(jié)實(shí)數(shù)的概念及其分類,、運(yùn)算律和運(yùn)算性質(zhì)等?! ∪⒁恍┙ㄗh  1.注重概念的形成過程,讓學(xué)生在概念的形成的過程中,逐步理解所學(xué)的概念;關(guān)注學(xué)生對(duì)無理數(shù)和實(shí)數(shù)概念的意義理解?! ?.鼓勵(lì)學(xué)生進(jìn)行探索和交流,重視學(xué)生的分析、概括、交流等能力的考察。  3.注意運(yùn)用類比的方法,使學(xué)生清楚新舊知識(shí)的區(qū)別和聯(lián)系?! ?.淡化二次根式的概念?!   ∫?、教學(xué)目標(biāo)  了解二次根式的意義;  掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;  掌握二次根式的性質(zhì)和,并能靈活應(yīng)用;  通過二次根式的計(jì)算培養(yǎng)學(xué)生的邏輯思維能力;  通過二次根式性質(zhì)和的介紹滲透對(duì)稱性、規(guī)律性的數(shù)學(xué)美?! 《?、教學(xué)重點(diǎn)和難點(diǎn)  重點(diǎn):  (1)二次根的意義; ?。?)二次根式中字母的取值范圍?! ‰y點(diǎn):確定二次根式中字母的取值范圍?! ∪?、教學(xué)方法  啟發(fā)式、講練結(jié)合?! ∷?、教學(xué)過程  (一)復(fù)習(xí)提問  什么叫平方根、算術(shù)平方根?  說出下列各式的意義,并計(jì)算 ?。ǘ┮胄抡n  新課:二次根式  定義:式子叫做二次根式。  對(duì)于請(qǐng)同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié): ?。?)式子只有在條件a≥0時(shí)才叫二次根式,是二次根式嗎?呢?  若根式中含有字母必須保證根號(hào)下式子大于等于零,因此字母范圍的限制也是根式的一部分。 ?。?)是二次根式,而,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次  根式指的是某種式子的“外在形態(tài)”。請(qǐng)學(xué)生舉出幾個(gè)二次根式的例子,并說明為什么是二次根式。下面例題根據(jù)二次根式定義,由學(xué)生分析、回答?! ±?當(dāng)a為實(shí)數(shù)時(shí),下列各式中哪些是二次根式?  例2x是怎樣的實(shí)數(shù)時(shí),式子在實(shí)數(shù)范圍有意義?  解:略?! ≌f明:這個(gè)問題實(shí)質(zhì)上是在x是什么數(shù)時(shí),x—3是非負(fù)數(shù),式子有意義?! ±?當(dāng)字母取何值時(shí),下列各式為二次根式:  分析:由二次根式的定義,被開方數(shù)必須是非負(fù)數(shù),把問題轉(zhuǎn)化為解不等式。  解:(1)∵a、b為任意實(shí)數(shù)時(shí),都有a2+b2≥0,∴當(dāng)a、b為任意實(shí)數(shù)時(shí),是二次根式?! 。?)—3x≥0,x≤0,即x≤0時(shí),是二次根式。 ?。?),且x≠0,∴x0,當(dāng)x0時(shí),是二次根式?! 。?),即,故x—2≥0且x—2≠0,∴x2。當(dāng)x2時(shí),是二次根式?! ±?下列各式是二次根式,求式子中的字母所滿足的條件:  分析:這個(gè)例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義。即:只有在條件a≥0時(shí)才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零。  解:(1)由2a+3≥0,得。 ?。?)由,得3a—10,解得?! 。?)由于x取任何實(shí)數(shù)時(shí)都有|x|≥0,因此,|x|+0。10,于是,式子是二次根式。所以所求字母x的取值范圍是全體實(shí)數(shù)?! 。?)由—b2≥0得b2≤0,只有當(dāng)b=0時(shí),才有b2=0,因此,字母b所滿足的條件是:b=0。
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1