【總結(jié)】第一篇:高中數(shù)學幾何證明題 新課標立體幾何??甲C明題匯總 1、已知四邊形ABCD是空間四邊形,E,F,G,H分別是邊AB,BC,CD,DA的中點 (1)求證:EFGH是平行四邊形 (2)若 ...
2024-10-22 21:58
【總結(jié)】(高中)平面幾何基礎知識(基本定理、基本性質(zhì))1.勾股定理(畢達哥拉斯定理)(廣義勾股定理)(1)銳角對邊的平方,等于其他兩邊之平方和,減去這兩邊中的一邊和另一邊在這邊上的射影乘積的兩倍. (2)鈍角對邊的平方等于其他兩邊的平方和,加上這兩邊中的一邊與另一邊在這邊上的射影乘積的兩倍.2.射影定理(歐幾里得定理)3.中線定理(巴布斯定理)設△ABC的邊BC的中點為P,則有;中
2025-06-16 21:17
【總結(jié)】第一篇:個人社保繳費證明定制下載操作說明 個人社保繳費證明定制下載操作說明 1、登錄“北京市人力資源和社會保障局”網(wǎng)站::// 2、點擊網(wǎng)頁中部“熱門辦事”中的“社會保險” 3、個人用戶注冊及...
2025-10-12 15:10
【總結(jié)】第一篇:高中數(shù)學幾何證明選講 幾何證明選講 1、(佛山市2014屆高三教學質(zhì)量檢測 (一))如圖,從圓O外一點A引圓的切線AD和割線ABC,已知AD=3,AC=3,圓O的半徑為5,則圓心O到AC...
2025-10-04 17:23
【總結(jié)】第一篇:淺談用向量法證明立體幾何中的幾個定理 淺談用向量法證明立體幾何中的幾個定理 15號 海南華僑中學(570206)王亞順 摘要:向量是既有代數(shù)運算又有幾何特征的工具,在高中數(shù)學的解題中起...
2024-11-06 07:25
【總結(jié)】第一篇:幾何證明 幾何證明 ,AD是∠EAC的平分線,AD∥BC,∠B=30o,求∠EAD、∠DAC、∠C的度數(shù) ∠BED=∠B+∠D,試說明AB與CD的位置關系 ,EB∥DC,∠C=∠E,請...
2024-11-09 01:12
【總結(jié)】新課標立體幾何??甲C明題匯總1、已知四邊形是空間四邊形,分別是邊的中點(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。證明:在中,∵分別是的中點∴同理,∴∴四邊形是平行四邊形。(2)90°30°
2025-04-04 05:07
【總結(jié)】平行判定總結(jié)一、線線平行的判定:在同一平面內(nèi),沒有公共點的兩條直線..,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行.,那么它們的交線平行..二、線面平行的判定:直線與平面無公共
2025-04-04 05:14
【總結(jié)】第一篇:高中數(shù)學立體幾何證明公式 線線平行→線面平行如果平面外一條直線和這個平面內(nèi)的一條直線平行,那么這條直線和這個平面平行。 線面平行→線線平行如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這...
2024-10-27 00:25
【總結(jié)】數(shù)學實驗之十五-初等幾何定理的計算機證明中國科學技術(shù)大學數(shù)學系陳發(fā)來主要內(nèi)容?符號計算與自動推理?幾何問題代數(shù)化?代數(shù)關系式的推導與驗證?自動推理1、符號計算與自動推理?符號計算精確的、帶未知變元的、公式的推導與驗證。符號運算
2025-07-25 08:55
【總結(jié)】1、已知正方體,是底對角線的交點.求證:(1)C1O∥面;(2)面.2、正方體中,求證:(1);(2).3、正方體ABCD—A1B1C1D1中.(1)求證:平面A1BD∥平面B1D1C;A1AB1BC1CD1DGEF(2)若E、F分別是AA1,
2025-03-26 05:42
【總結(jié)】立體幾何——平行的證明【例1】如圖,四棱錐P-ABCD的底面是平行四邊形,點E、F分別為棱AB、PD的中點.求證:AF∥平面PCE;(第1題圖)分析:取PC的中點G,連EG.,F(xiàn)G,則易證AEGF是平行四邊形【例2】如圖,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,過A作AE⊥CD,垂足為E,G
【總結(jié)】第一篇:空間幾何證明 立體幾何中平行、垂直關系證明的思路 平行垂直的證明主要利用線面關系的轉(zhuǎn)化: 線∥線???線∥面???面∥面性質(zhì) ?判定???線⊥線???線⊥面???面⊥面???? 線∥...
2025-10-04 19:19
【總結(jié)】第一篇:幾何證明(一) 幾何證明 (一):A,B,C三點在同一直線上,△ABD和△BCE都是等邊三角形,AE交BD于M,CD交BE于N求證:MN∥AC C :AD是Rt△ABC斜邊上的高,角平...
2024-11-16 04:24
【總結(jié)】第一篇:高中立體幾何證明平行的專題訓練) 高中立體幾何證明平行的專題訓練 深圳市龍崗區(qū)東升學校——羅虎勝 立體幾何中證明線面平行或面面平行都可轉(zhuǎn)化為線線平行,而證明線線平行一般有以下的一些方法:...
2024-11-16 23:32