【總結(jié)】第一篇:中考數(shù)學(xué)經(jīng)典幾何證明題 2011年中考數(shù)學(xué)經(jīng)典幾何證明題 (一)1.(1)如圖1所示,在四邊形ABCD中,AC=BD,AC與BD相交于點O,E、F分別是AD、BC的中點,聯(lián)結(jié)EF,分別交A...
2024-10-28 23:38
【總結(jié)】1.(本題10分)如圖,已知:ABCD中,的平分線交邊于,的平分線交于,交于.求證:.ABCDEFG2.在正方形ABCD中,AC為對角線,E為AC上一點,連接EB、ED.(1)求證:△BEC≌△DEC;AFDEBC(2)延長BE交AD于F,當(dāng)∠BED=120°時,
2025-04-04 03:51
【總結(jié)】第一篇:幾何證明題訓(xùn)練 仁家教育---您可以相信的品牌! 仁家教育教案 百川東到海,何時復(fù)西歸? 少壯不努力,老大徒傷悲。 您的理解與支持是我們前進(jìn)最大的動力!1 您的理解與支持是我們前進(jìn)...
2024-10-21 22:32
【總結(jié)】第一篇:幾何證明題練習(xí) 幾何證明題練習(xí) ,Rt△ABC中AB=AC,點D、E是線段AC上兩動點,且AD=EC,AM⊥BD,垂足為M,AM的延長線交BC于點N,直線BD與直線NE相交于點F。試判斷△...
2024-10-27 12:16
【總結(jié)】第一篇:中考數(shù)學(xué)幾何證明題 中考幾何證明題 一、證明兩線段相等 1、真題再現(xiàn) 18.如圖3,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一點,2.如圖,在△ABC中,點P是邊AC上的一...
2024-10-27 11:22
【總結(jié)】第一篇:幾何證明題(難) 附加題: 1、已知:如圖,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的...
2024-10-21 22:37
【總結(jié)】第一篇:幾何證明題大全 幾何證明題 ,BD,CE是邊AC,AB上的中點,BD與CE相交于點O,BO與OD的長度有什么關(guān)系?BC邊上的中線是否一定過點O?為什么? 答題要求:請寫出詳細(xì)的證明過程,...
2024-10-22 00:16
【總結(jié)】第一篇:初一數(shù)學(xué)幾何證明題 初一數(shù)學(xué)幾何證明題 一般認(rèn)為,要提升數(shù)學(xué)能力就是要多做,培養(yǎng)興趣。事實上,興趣不是培養(yǎng)出來的,而是每次考試都要考得好,產(chǎn)生信心,才能生出興趣來。所以數(shù)學(xué)不好,問題不在自...
2024-11-16 05:18
【總結(jié)】第一篇:初中幾何證明題 (1)如圖,在三角形ABC中,BD,CE是高,F(xiàn)G分別為ED,BC的中點,O是外心,求證AO∥FG問題補(bǔ)充: 證明:延長AO,交圓O于M,連接BM,則:∠ABM=90°,且...
2024-10-24 21:41
【總結(jié)】第一篇:幾何證明題方法 (初中、高中)幾何證明題一些技巧 初中幾何證明技巧(分類) 證明兩線段相等 。 。 。 。 。 。 。 。*(或等圓)中等弧所對的弦或與圓心等距的兩弦或等...
2024-10-27 15:56
【總結(jié)】重慶中考(往屆)數(shù)學(xué)24題專題練習(xí) 1、如圖,等腰梯形ABCD中,AD∥BC,AB=DC,E為AD中點,連接BE,CE (1)求證:BE=CE; (2)若∠BEC=90°,過點B作BF⊥CD,垂...
2024-10-29 00:50
【總結(jié)】專業(yè)整理分享高中數(shù)學(xué)解析幾何壓軸題1.選擇題1.已知傾斜角α≠0的直線l過橢圓(a>b>0)的右焦點交橢圓于A、B兩點,P為右準(zhǔn)線上任意一點,則∠APB為( ?。?/span>
2025-04-04 05:15
【總結(jié)】最新中考數(shù)學(xué)幾何證明(平行四邊形,菱形矩形正方形)經(jīng)典1.(本題10分)如圖,已知:ABCD中,的平分線交邊于,的平分線交于,交于.求證:.ABCDEFG2.在正方形ABCD中,AC為對角線,E為AC上一點,連接EB、ED.(1)求證:△BEC≌△DEC;AFDE
2025-07-24 18:35
【總結(jié)】初中數(shù)學(xué):幾何證明題的思路要掌握初中數(shù)學(xué)幾何證明題技巧,熟練運(yùn)用和記憶如下原理是關(guān)鍵。下面瑞德特老師整理了各類幾何證明題的解題思路及常用的定理,供同學(xué)們參考。幾何證明題的思路很多幾何證明題的思路往往是填加輔助線,分析已知、求證與圖形,探索證明。對于證明題,有三種思考方式:(1)正向思維。對于一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細(xì)講述了。(2)逆向
2025-04-04 03:50
【總結(jié)】中考解答下列各題一、證明題:1、在正方形ABCD中,AC為對角線,E為AC上一點,連接EB、ED并延長分別交AD、AB于F、G(1)求證:EF=EG;(2)當(dāng)∠BED=120°時,求∠EFD的度數(shù).AFDEBC2、已知:如圖,在正方形ABCD中,點E、F分別在BC和CD上,AE=AF.(
2025-03-24 12:13