【導讀】思考如何比較甲、乙兩名工人的技術?用一個類似于樣本方差的量來刻畫隨機變量的波動程度呢?一般地,若離散型隨機變量X的概率分布如表所示,的平均偏離程度,我。們將其稱為離散型隨機變量X的方差.記為??VX的算術平方根稱為X的。到取出白球為止.求:取球次數(shù)?求重復5次投籃時,命中次數(shù)?些球除顏色外完全相同.某學生一次從中摸出5個球,其中紅球的個數(shù)為X,求X的數(shù)學期望.
【總結(jié)】2.3離散型隨機變量的均值與方差2.3.1離散型隨機變量的均值教學目標:知識與技能:了解離散型隨機變量的均值或期望的意義,會根據(jù)離散型隨機變量的分布列求出均值或期望.過程與方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),則Eξ=np”.能熟練地應用它們求相應的離散型隨機變量
2024-11-20 03:13
【總結(jié)】離散型隨機變量的方差一般地,若離散型隨機變量X的概率分布為則稱E(X)=x1p1+x2p2+…+xnpn為X的均值或數(shù)學期望,記為E(X)或μ.Xx1x2…xnPp1p2…pn其中pi≥0,i=1,2,…,n;p1+p2+…+pn=11、離散型隨機變量的均值的定義
2024-11-18 15:23
【總結(jié)】§2.1.1離散型隨機變量教學目標:知識目標:;,并能舉出離散性隨機變量的例子;,并恰當?shù)囟x隨機變量.能力目標:發(fā)展抽象、概括能力,提高實際解決問題的能力.情感目標:學會合作探討,體驗成功,提高學習數(shù)學的興趣.教學重點:隨機變量、離散型隨機變量、連續(xù)型隨機變量的意義奎屯王新敞新疆教
2024-11-19 19:35
【總結(jié)】一、教學目標:1、知識與技能:了解離散型隨機變量的方差、標準差的意義,會根據(jù)離散型隨機變量的分布列求出方差或標準差。2、過程與方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),則Dξ=np(1—p)”,并會應用上述公式計算有關隨機變量的方差。3、情感、態(tài)度與價值觀:承前啟后,感悟數(shù)學與生活的和諧之美
2024-12-03 11:29
【總結(jié)】《離散型隨機變量及其分布列-離散型隨機變量分布列》教學目的?1理解離散型隨機變量的分布列的意義,會求某些簡單的離散型隨機變量的分布列;?⒉掌握離散型隨機變量的分布列的兩個基本性質(zhì),并會用它來解決一些簡單的問題.?⒊了解二項分布的概念,能舉出一些服從二項分布的隨機變量的例子?教學重點:離散型隨機變量的分布列的概念
2024-11-18 12:12
【總結(jié)】§2.3離散型隨機變量的均值與方差§2.3.1離散型隨機變量的均值教學目標:知識與技能:了解離散型隨機變量的均值或期望的意義,會根據(jù)離散型隨機變量的分布列求出均值或期望.過程與方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),則Eξ=np”.能熟練地應用它們求相應的
【總結(jié)】2.3.1離散型隨機變量的期望教學目標:知識與技能:了解離散型隨機變量的均值或期望的意義,會根據(jù)離散型隨機變量的分布列求出均值或期望.過程與方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),則Eξ=np”.能熟練地應用它們求相應的離散型隨機變量的均值或期望。情感、態(tài)度與價值觀
2024-12-08 22:39
【總結(jié)】§2.1.1離散型隨機變量教學目標:知識目標:;,并能舉出離散性隨機變量的例子;,并恰當?shù)囟x隨機變量.能力目標:發(fā)展抽象、概括能力,提高實際解決問題的能力.情感目標:學會合作探討,體驗成功,提高學習數(shù)學的興趣.教學重點:隨機變量、離散型隨機變量、連續(xù)型隨機變量的意義教學難點:隨機變
2024-12-05 06:39
【總結(jié)】 §5 離散型隨機變量的均值與方差 備課資源參考 教學建議 ,常以解答題的形式進行考查. ,難點是利用離散型隨機變量的均值和方差解決實際問題. ,引導學生通過實際問題加深對它的理解,分...
2025-04-03 02:55
【總結(jié)】一.隨機事件:在一定條件下可能發(fā)生也可能不發(fā)生的事件二、隨機事件的概率一般地,在大量重復進行同一試驗時,事件A發(fā)生的頻率總是接近于某個常數(shù),在它附近擺動,這時就把這個常數(shù)叫做事件A的概率,記作P(A)mn知識回顧幾點說明:(
2025-01-06 16:34
【總結(jié)】隨機變量的均值和方差學習目標重點、難點1.能記住離散型隨機變量的均值概念及計算方法;2.能記住離散型隨機變量的方差概念及計算方法;3.能用均值、方差(標準差)來分析解決實際問題.重點:均值、方差(標準差)的概念.難點:利用均值、方差(標準差)解決實際問題.1.離散型隨機變量的均值(
2024-12-05 09:27
【總結(jié)】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學離散隨機變量的均值課后知能檢測蘇教版選修2-3一、填空題1.(2021·鎮(zhèn)江高二檢測)隨機變量X的概率分布如下:X1234Pp則E(X)=________.【解析】p=1-(++)=,∴E(X)=1
2024-12-04 20:00
【總結(jié)】離散型隨機變量的分布列一、基本知識概要::隨機試驗的結(jié)果可以用一個變量來表示,這樣的變量的隨機變量,記作;??,說明:若是隨機變量,,其中是常數(shù),則也是隨機變量。?ba????ba,?一、基本知識概要:2.離散型隨機變量:隨機變量可能取的值,可以按一
2024-11-18 15:24
【總結(jié)】《離散型隨機變量的均值與方差-期望值》教學目標?1了解離散型隨機變量的期望的意義,會根據(jù)離散型隨機變量的分布列求出期望.?⒉理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),則Eξ=np”.能熟練地應用它們求相應的離散型隨機變量的期望?教學重點:離散型隨機變量的期望的概念?教學難點:根據(jù)離