【導(dǎo)讀】業(yè)精于勤,荒于嬉;行成于思,毀
【總結(jié)】4二次函數(shù)的應(yīng)用第1課時(shí)【基礎(chǔ)梳理】利用二次函數(shù)求幾何圖形的最大面積的基本方法(1)引入自變量.(2)用含自變量的代數(shù)式分別表示與所求幾何圖形相關(guān)的量.(3)根據(jù)幾何圖形的特征,列出其面積的計(jì)算公式,并且用函數(shù)表示這個(gè)面積.(4)根據(jù)函數(shù)關(guān)系式,求出最大值及取得最大值時(shí)自變量的值.【自我診斷】
2025-06-12 13:43
【總結(jié)】4二次函數(shù)的應(yīng)用第2課時(shí)【基礎(chǔ)梳理】(1)引入_______.(2)用含_______的代數(shù)式分別表示銷售單價(jià)或銷售收入及銷售量.自變量自變量(3)用含_______的代數(shù)式表示銷售的商品的單件盈利.(4)用函數(shù)及含_______的代數(shù)式分別表示銷售利潤,即___________.(5)根
2025-06-14 06:48
【總結(jié)】第一篇:二次函數(shù)的應(yīng)用教案 第二章二次函數(shù) 二次函數(shù)的應(yīng)用(1) 一、知識點(diǎn) 、教學(xué)目標(biāo)知識與技能: 能夠分析和表示不同背景下實(shí)際問題中變量之間的二次函數(shù)關(guān)系,并能夠運(yùn)用二次函數(shù)的知識解決實(shí)...
2024-10-24 21:13
【總結(jié)】北師大版九年級下冊第二章《二次函數(shù)》?(1)設(shè)矩形的一邊AB=xm,那么AD邊的長度如何表示??(2)設(shè)矩形的面積為ym2,當(dāng)x取何值時(shí),y的值最大?最大值是多少?何時(shí)面積最大?如圖,在一個(gè)直角三角形的內(nèi)部作一個(gè)矩形ABCD,其中AB和AD分別在兩直角邊上.M40m30mABCD
2024-12-07 15:24
【總結(jié)】4二次函數(shù)的應(yīng)用第二章二次函數(shù)課堂達(dá)標(biāo)素養(yǎng)提升第二章二次函數(shù)第2課時(shí)最大利潤問題課堂達(dá)標(biāo)一、選擇題第2課時(shí)最大利潤問題1.若一種服裝的銷售利潤y(萬元)與銷售數(shù)量x(萬件)之間滿足函數(shù)表達(dá)式y(tǒng)=-2x2+4x+5,則盈利的最值情況為()A.有最
2025-06-20 16:00
【總結(jié)】舉一綱而萬目張,解一卷而眾篇明。
2024-12-08 03:10
【總結(jié)】二次函數(shù)檢測(時(shí)間45分鐘滿分100分)一.選擇題(每小題5分,共50分)1.(2017?七里河區(qū)校級模擬)下列函數(shù)中,是二次函數(shù)的有()①y=1﹣x2②y=③y=x(1﹣x)④y=(1﹣2x)(1+2x)A.1個(gè)B.2個(gè)C.3個(gè)D.
2024-11-15 11:08
【總結(jié)】二次函數(shù)一、選擇題1.下列函數(shù)中屬于一次函數(shù)的是(),屬于反比例函數(shù)的是(),屬于二次函數(shù)的是()A.y=x(x+1)B.xy=1C.y=2x2-2(x+1)2D.132??xy2.在二次函數(shù)①y=3x2;②2234;32xyxy??③中,圖象在同一水平線上的開口大小順
2024-11-28 19:22
【總結(jié)】4二次函數(shù)的應(yīng)用第二章二次函數(shù)課堂達(dá)標(biāo)素養(yǎng)提升第二章二次函數(shù)第1課時(shí)最大面積問題課堂達(dá)標(biāo)一、選擇題第1課時(shí)最大面積問題1.2022·南通一模為搞好環(huán)保,某公司準(zhǔn)備修建一個(gè)長方體的污水處理池,矩形池底的周長為100m,則池底的最大面積是()
2025-06-13 00:01
【總結(jié)】——培根二次函數(shù)的圖像與性質(zhì)(2)22yxyx???與的圖象一樣嗎?它們有什么相同點(diǎn)?不同點(diǎn)?22yxyx???與這兩種呢?有沒有其他形式的二次函數(shù)?x…-3-2-10123…y=x2…
2024-11-17 22:41
【總結(jié)】第二章二次函數(shù)二次函數(shù)的應(yīng)用知識點(diǎn)最大利潤問題,在銷售過程中,發(fā)現(xiàn)一周利潤y(元)與每件銷售價(jià)x(元)之間的關(guān)系滿足y=-2(x-20)2+1558,由于某種原因,銷售價(jià)需滿足15≤x≤22,那么一周可獲得的最大利潤是(D),100件按批發(fā)價(jià)每件30元,每多批發(fā)10件
2025-06-18 00:31
【總結(jié)】第二章二次函數(shù)二次函數(shù)的應(yīng)用知識點(diǎn)1利用二次函數(shù)求圖形面積的最值20cm,則這個(gè)直角三角形的最大面積為(B)cm2cm2cm22.用長8m的鋁合金條制成使窗戶的透光面積最大的矩形窗框(如圖),那么這個(gè)窗戶的最大透光面積是(C)A.6425m2
2025-06-18 00:33
【總結(jié)】第二章二次函數(shù)本專題包括求圖形面積的最值問題、求拋物線形運(yùn)動問題、求拋物線形建筑物問題、求銷售中最大利潤問題,是中考??嫉念}型,特別是利潤問題,是近年考查的熱點(diǎn)題型.類型1求面積(體積)的最值問題1.如圖,有一塊邊長為6cm的正三角形紙板,在它的三個(gè)角處分別截去一個(gè)彼此全等的箏形,再沿圖中的虛線折起,做成一個(gè)無蓋的
2025-06-12 00:36