【總結(jié)】4二次函數(shù)的應(yīng)用第二章二次函數(shù)課堂達(dá)標(biāo)素養(yǎng)提升第二章二次函數(shù)第2課時(shí)最大利潤問題課堂達(dá)標(biāo)一、選擇題第2課時(shí)最大利潤問題1.若一種服裝的銷售利潤y(萬元)與銷售數(shù)量x(萬件)之間滿足函數(shù)表達(dá)式y(tǒng)=-2x2+4x+5,則盈利的最值情況為()A.有最
2025-06-20 16:00
【總結(jié)】回顧&思考?④二次函數(shù)y=kx+b(k≠0)y=kx(k≠0)函數(shù)變量之間的關(guān)系②一次函數(shù)③反比例函數(shù)①正比例函數(shù)創(chuàng)設(shè)&情境二次函數(shù)所描述的關(guān)系創(chuàng)設(shè)&情境圓的半徑是xcm,圓的面積為ycm2,寫出y與x之間的函數(shù)
2024-11-06 21:11
【總結(jié)】二次函數(shù)的應(yīng)用【教學(xué)內(nèi)容】二次函數(shù)的應(yīng)用(二)【教學(xué)目標(biāo)】知識與技能正確分析和把握利潤最大化問題的數(shù)量關(guān)系,從而得到函數(shù)關(guān)系,再求最值.過程與方法學(xué)會(huì)如何建立數(shù)學(xué)模型解決最優(yōu)化問題,并運(yùn)用二次函數(shù)的知識求出實(shí)際問題的最大值、最小值.情感、態(tài)度與價(jià)值觀通過二次函數(shù)解決身邊問題,體會(huì)數(shù)學(xué)知識應(yīng)用的價(jià)值,提高學(xué)生學(xué)習(xí)數(shù)學(xué)
2024-11-19 15:45
【總結(jié)】九年級數(shù)學(xué)(下)第二章二次函數(shù)y=ax2+bx+c的圖象(3)練習(xí)題陽泉市義井中學(xué)高鐵牛?例.求次函數(shù)y=ax2+bx+c的對稱軸和頂點(diǎn)坐標(biāo).函數(shù)y=ax2+bx+c的頂點(diǎn)式?一般地,對于二次函數(shù)y=ax2+bx+c,我們可以利用配方法推導(dǎo)出用各項(xiàng)系數(shù)a,b,c表示的對稱軸和頂
2024-11-06 21:12
【總結(jié)】f(x)=0有兩正根?一、二次方程ax2+bx+c=0(a0)的實(shí)根分布問題記f(x)=ax2+bx+c(a0),△=b2-4ac≥0.x1+x2=-0abacx1x2=0?△=b2-4ac≥0f(0)0.-02ab
2024-11-17 17:38
【總結(jié)】復(fù)習(xí)鞏固:1、二次函數(shù)可以用哪幾種方法表示?2、寫出下列函數(shù)的頂點(diǎn)坐標(biāo),并說出它的最值情況:(1)y=2x2-3x+5(2)y=-2x2+4x+3何時(shí)橙子總產(chǎn)量最大?某果園有100棵橙子樹,每一棵樹平均結(jié)600個(gè)橙子.現(xiàn)準(zhǔn)備多種一些橙子樹以提高產(chǎn)量,但是如果多種樹,那么樹之間的距離和每一棵樹所接受的陽光就會(huì)減少
2024-11-24 21:10
【總結(jié)】二次函數(shù)的應(yīng)用(一)一、選擇題:1.二次函數(shù)y=ax2+bx+c的圖象如圖2-90所示,則下列判斷錯(cuò)誤的是()A.a(chǎn)>0B.c<0D.y隨x的增大而減小2.關(guān)于二次函數(shù)y=x2+4x-7的最大(小)值敘述正確的是()A.當(dāng)x
2024-11-28 19:22
2024-12-07 15:24
【總結(jié)】北師大版九年級下冊第二章《二次函數(shù)》?(1)設(shè)矩形的一邊AB=xm,那么AD邊的長度如何表示??(2)設(shè)矩形的面積為ym2,當(dāng)x取何值時(shí),y的值最大?最大值是多少?何時(shí)面積最大?如圖,在一個(gè)直角三角形的內(nèi)部作一個(gè)矩形ABCD,其中AB和AD分別在兩直角邊上.M40m30mABCD
【總結(jié)】二次函數(shù)的應(yīng)用(1)教材分析本節(jié)課要經(jīng)歷探索長方形和窗戶透光最大面積問題的過程,進(jìn)一步獲得利用數(shù)學(xué)方法解決實(shí)際問題的經(jīng)驗(yàn),并進(jìn)一步感受數(shù)學(xué)模型思想和數(shù)學(xué)的應(yīng)用價(jià)值.在實(shí)際背景中解決最優(yōu)化問題,不是很容易的一件事.首先,實(shí)際問題的敘述往往比較長,使人感到問題很難,其次,分析其中各個(gè)量之間的關(guān)系也不是—件輕松的事情,要想解決好這類問題
2024-11-19 04:44
【總結(jié)】二次函數(shù)的應(yīng)用(2)教材分析從題目來看,“何時(shí)獲得最大利潤”似乎是商家才應(yīng)該考慮的問題.但是你知道嗎?這正是我們研究的二次函數(shù)的范疇.因?yàn)槎魏瘮?shù)化為頂點(diǎn)式后,很容易求出最大或最小值.而何時(shí)獲得最大利潤就是當(dāng)自變量取何值時(shí),函數(shù)值取最大值的問題.因此本節(jié)課中關(guān)鍵的問題就是如何使學(xué)生把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,從而把數(shù)學(xué)知識運(yùn)用于實(shí)踐.即是否
2024-11-19 14:40
【總結(jié)】說一說:通過二次函數(shù)的學(xué)習(xí),你應(yīng)該學(xué)什么?你學(xué)會(huì)了什么?1理解二次函數(shù)的概念;2會(huì)用描點(diǎn)法畫出二次函數(shù)的圖象;3會(huì)用配方法和公式確定拋物線的開口方向,對稱軸,頂點(diǎn)坐標(biāo);4會(huì)用待定系數(shù)法求二次函數(shù)的解析式;5能用二次函數(shù)的知識解決生活中的實(shí)際問題及簡單的綜合運(yùn)用。二次函數(shù)
2024-11-07 01:41
【總結(jié)】4二次函數(shù)的應(yīng)用第二章二次函數(shù)課堂達(dá)標(biāo)素養(yǎng)提升第二章二次函數(shù)第1課時(shí)最大面積問題課堂達(dá)標(biāo)一、選擇題第1課時(shí)最大面積問題1.2022·南通一模為搞好環(huán)保,某公司準(zhǔn)備修建一個(gè)長方體的污水處理池,矩形池底的周長為100m,則池底的最大面積是()
2025-06-16 16:42
【總結(jié)】初中數(shù)學(xué)資源網(wǎng)初中數(shù)學(xué)資源網(wǎng)拋物線y=x2y=-x2頂點(diǎn)坐標(biāo)對稱軸位置開口方向增減性最值(0,0)(0,0)y軸y軸在x軸的上方(除頂點(diǎn)外)在x軸的下方(除頂點(diǎn)外)向上向下當(dāng)x=0時(shí),最小值為0當(dāng)x=0時(shí),最大值為0二次函數(shù)y=x2
2024-11-06 14:38
【總結(jié)】二次函數(shù)的應(yīng)用第一課時(shí)檢測(時(shí)間45分鐘滿分100分)一.選擇題(每小題5分,共50分)1.(2017?臨沂)足球運(yùn)動(dòng)員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線,不考慮空氣阻力,足球距離地面的高度h(單位:m)與足球被踢出后經(jīng)過的時(shí)間t(單位:s)之間的關(guān)系如下表:
2024-11-16 15:23