【導讀】設z1=a+bi,z2=c+z1+z2=-z2=__________.若z=a+bi,則記z的共軛復數(shù)為z,即z=________.①zz∈R,z+z∈R;2.已知a是實數(shù),a-i1+i是純虛數(shù),則a=________.3.復數(shù)i3(1+i)2=________.4.已知a+2ii=b+i,其中i為虛數(shù)單位,則a+b=________.7.已知復數(shù)z=1+i,則2z-z=________.8.若21-i=a+bi,則a+b=________.1+i1-i6+2+3i3-2i.11.已知復數(shù)z滿足z·z+2i·z=4+2i,求復數(shù)z.2.復數(shù)的乘法與多項式乘法是類似的,在所得結果中把i2換成-1.=a-12-a+12i,解析∵a+2ii=b+i,∴a+2i=bi-1.3·(-i)=-i4=-1.由復數(shù)相等的定義,知a+b=2.又(x+y)2-3xyi=4-6i,∴4a2-3i=4-6i,∴a2+b2-2b+2ai=4+2i,12.解設x=x0是方程的實根,代入方程并整理得+i=0,∴方程的實根為x=2或x=-2,相應的k值為k=-22或k=22.