【導(dǎo)讀】設(shè)x,y都是正數(shù),且1x+2y=3,求2x+y的最小值;虎籠的鋼筋網(wǎng)總長最?。拷馕觥唿c(diǎn)P(x,y)在直線AB上,∴x+2y=3.∴2x+4y≥22x·4y=22x+2y=42.y+12x2=x2+y2+14??????xy+yx≥1+1+2=4.即2m+n=1,mn>0,∴m>0,n>0.故1m+2n的最小值為8.yx+4xy+4≥13=83.當(dāng)且僅當(dāng)yx=4xy時(shí)取“=”,即y2=4x2,∴y=2x.∴當(dāng)x=1時(shí),函數(shù)y=(x+5)(x+2)x+1取得最小值為9.由基本不等式知y≥1+210x·x10=3,當(dāng)且僅當(dāng)10x=x10,即x=10時(shí)取等號.因此。解得:t≥6,∴(a+b)min=6.∴a+b=a+a+3a-1=a+4a-1+1=(a-1)+4a-1+2≥2(a-1)·4a-1+2=6.故每間籠長為,寬為3m,可使面積最大,時(shí),等號成立,此時(shí)。由條件知S=xy=l,則l=4x+6y.