【導(dǎo)讀】2.復(fù)數(shù)1+2i3=__________.3.如圖,設(shè)向量OP→,PQ→,OQ→,OR→所對(duì)應(yīng)的復(fù)數(shù)分別為z1,z2,z3,z4,那么z2+z4-2z3. 4.已知z是純虛數(shù),z+21-i是實(shí)數(shù),那么z=__________.acbd=ad-bc,則符合條件????1z-1zi=4+2i的復(fù)數(shù)z為________.。9.若-1-3i2是方程x2+px+1=0的一個(gè)根,則p=________.①?gòu)?fù)數(shù)的??偸钦龑?shí)數(shù);②虛軸上的點(diǎn)與純虛數(shù)一一對(duì)應(yīng);14.若復(fù)數(shù)z=23+2i對(duì)應(yīng)的點(diǎn)為Z,則向量OZ→所在直線的傾斜角θ=________.15.(14分)計(jì)算i-231+23i+-??????16.(14分)已知復(fù)數(shù)x2+x-2+i(x∈R)是4-20i的共軛復(fù)數(shù),求實(shí)數(shù)x. 17.(14分)實(shí)數(shù)k為何值時(shí),復(fù)數(shù)(1+i)k2-k-2滿足下列條件?從圖形上可得|z+22+i|的最大值是4.解析BA→對(duì)應(yīng)的復(fù)數(shù)為-1+i,BC→對(duì)應(yīng)的復(fù)數(shù)為3+2i,∵BD→=BA→+BC→,解析由題意知OA→=(1,1),OB→=,且|OA→|=|z1|=2,|OB→|=|z2|=8=22.∴tanθ=223=33,即θ=π6.18.解∵z2=2z1+3-4i,∴2z1=z2-3+4i.又|2z1|=2,∴|z2-3+4i|=2,