【導(dǎo)讀】[解析]設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d.②-①得2d=6,∴d=3.a2+a4=a1+d+a1+3d=2a1+4d=2a1+4×3=4,S10=10×(-4)+10×92×3=-40+135=95.4a1+6d=20,∴d=3.[解析]S3=3a1+3×22d=9,且a1=1,∴d=2,∴a2=a1+d=3.∵a1=1也適合an,∴an=2n-1,選D.6.?dāng)?shù)列{an}是等差數(shù)列,a1+a2+a3=-24,a18+a19+a20=78,則此數(shù)列的前20項(xiàng)和?!郺1+a20=a2+a19=a3+a18,∴a1+a20+a2+a19+a3+a18=54.∴a1+a20=18.∴S20=a1+a202=180.8.等差數(shù)列{an}前9項(xiàng)的和等于前4項(xiàng)的和.若a1=1,ak+a4=0,則k=________.∵S4=S9,∴a5+a6+a7+a8+a9=0,9.設(shè){an}是等差數(shù)列,前n項(xiàng)和記為Sn,已知a10=30,a20=50.由Sn=na1+nn-2d,Sn=242,得方程12n+nn-2×2=242,∴前10項(xiàng)或前11項(xiàng)和最小.1.在等差數(shù)列{an}中,a1+a4+a7=39,a3+a6+a9=27,則數(shù)列{an}. 由題意,得a1+a2+a3+a4=21,∴4=21+67=88,∴a1+an=22.=2=38,∴m=10.